
x U

sup f(x) g(x) < .
∈

− ε (1)

Neural network based Monte Carlo simulation of random processes

M. Beer
Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX, USA

Institut für Statik und Dynamik der Tragwerke, Technische Universität Dresden, Germany

P. D. Spanos
Ryon Chair in Engineering, Rice University, Houston, TX, USA

Keywords: Monte Carlo simulation, neural networks, random processes

ABSTRACT: In this paper a procedure for Monte Carlo simulation of univariate stationary stochastic pro-

cesses with the aid of neural networks is presented. As an alternative to traditional model-based simulation

procedures, this one circumvents the difficulty of specifying a priori statistical properties of the process. This is

particularly advantageous when only limited data are available. Neural networks operate model-free and learn

directly from the data observed. They capture the pattern of short time series during the training procedure.

The trained network can then generate a set of random process realizations which reflect the properties of the

training data. In the present study a time lagged feed-forward network with logistic sigmoid activation func-

tions is applied. The training of the network is realized by back-propagation with a generalized delta rule. An

example demonstrates the usefulness of the proposed procedure.

1 MOTIVATION

Numerical simulations of stochastic processes have

become an important task in many engineering fields.

Monte Carlo approaches are particularly suitable

tools for those simulation purposes. Their usefulness

in diverse engineering applications has been well es-

tablished over a period of decades; see Schuëller and

Spanos (2001). If sufficient information about the

underlying physics of a stochastic process is avail-

able, a numerical model for the process may be for-

mulated. However, difficulties may be experienced in

the case of limited information. If the data bank com-

prises only a single short data record, and no physical

background knowledge about the process is avail-

able, the specification of power spectra and prob-

ability distributions to a sufficient degree of reliability

may be problematic. Even if several process records

exist, estimates of the process properties may be

uncertain and perhaps cannot be obtained with an ap-

propriate degree of confidence.

Neural network based procedures may provide a

suitable tool for analyzing and representing stochas-

tic processes in these problematic cases. Neural net-

works operate model-free, learn directly from the

data observed, and generate predictions based on

perceptions only. Assumptions or knowledge beyond

the data set are not required. Moreover, it can be

shown that the universal function approximation the-

orem is valid for neural networks which meet some

minimum requirements; see e.g. Haykin (1999). That

is, neural networks are capable of uniformly approxi-

mating any kind of nonlinear functions over a com-

pact domain of definition to any degree of accuracy.

Specifically, for any given real continuous function

g(x) on a compact set U n and arbitrary > 0,

there exists a neural network with the output f(x)

such that

Each realization of a stochastic process which can be

understood as such a continuous function g can then

be approximated by a neural network. Conceptually,

this relates to traditional methods such as ARMA for

generating process realizations. However, the neural

network procedure does not require a model

specification. An appropriate randomization of the

network based synthesis of process realizations then

allows for a Monte Carlo simulation.

Starting from fundamental properties of neural

networks discussed in references such as Bishop

(1995) and Haykin (1999), an attempt is made herein

2179

ICOSSAR 2005, G. Augusti, G.I. Schuëller, M. Ciampoli (eds)
© 2005 Millpress, Rotterdam, ISBN 90 5966 040 4

y
k

m

j 1

w
kj

x
j

b
k

. (2)

(x) 1 exp(x) 1 (3)

(x) (x) 1 (x) (4)

input layer

hidden layer

output layer
weight wkj

neuron
bias bk

to use their unique features for addressing problems

in process simulation. In this context, it is assumed

that only one short process realization has been

observed, and no further information is available.

2 NETWORK COMPOSITION

2.1 General network configuration

In the present study, it is attempted to find a neural

network structure that is simple and clearly arranged

while it yields reliable results. In selecting an appro-

priate network configuration, a broad variety of

neural network layouts are available. Basically, they

consist of simple information processing units called

neurons and information transferring links between

the neurons – the synaptic connections. The neurons

are arranged in a layered structure. Input signals are

processed along a variety of paths through several

neurons to compute output signals. The specific lay-

out of the synaptic connections and the information

processing rules within the neurons have to be

defined in dependence on the particular problem.

If the generation of process realizations is under-

stood as a problem of function approximation, we

can make use of some experience from that field.

Following these experiences a multi-layer perceptron

network is selected as a basis. This network kind can

readily satisfy the minimum requirements for the val-

idity of the universal function approximation theo-

rem. Only three layers, appropriate nonlinear activat-

ion functions (.) for processing signals within the

neurons, a simple feed-forward architecture, and a

sufficiently high number of hidden neurons are re-

quired (Fig. 1). The number of output neurons is

determined by the dimensionality of the problem. To

consider univariate processes, only one output neu-

ron is sufficient.

Each neuron may receive several input signals xj

only from the previous layer. These are multiplied by

the assigned synaptic weights wkj and together with a

bias value bk are introduced into a summing junction.

The weights and the bias allow the neuron to be

adjusted to particular conditions. The summing junc-

tion generates the input argument for the subse-

quently called activation function (.). This yields the

output signal yk generated by neuron k. Specifically,

Figure 1. Multi-layer perceptron network for function approx-

imation and general construct of a neuron

The activation function (.) is required to be

nonlinear and monotonically increasing from zero to

unity. Herein, the logistic sigmoid function

is selected. This function possesses the advantage

that its derivatives '(x), which must be computed

millions of times during the network training, can be

obtained easily when the functional values (x) are

already known. Specifically,

This reduces the computational cost of the training

procedure drastically; see Eqs. (14) and (15).

2.2 Process specific network features

2.2.1 Network layout elements

A neural network of the selected basic kind can

realize an arbitrary nonlinear mapping. However, for

being able to simulate a random process, it must

additionally operate as a dynamic mapper. Since a

feed-forward network works statically, it must be

provided with memory for that purpose. Specifically,

both short-term memory, and long-term memory fea-

tures are required.

Short-term memory is established by implementing

time into the network structure in an implicit manner.

In this paper the network development is focused on

dealing with stationary processes as a first step. For

this purpose it is sufficient to attach a focused

neuronal filter to the front end of the multi-layer

perceptron; see Fig. 2. That is, account is taken of

input signals not only from the current but also from

2180 © 2005 Millpress, Rotterdam, ISBN 90 5966 040 4

x
min

ln
1

1 ,

x
max

x
min

,

(6)

previous time steps. A series of past input values are

fed to the network at once. They are stored in a

tapped delay line memory. This network kind is

called focused time lagged feed-forward network and

represents a nonlinear filter. It is capable of

recognizing temporal patterns.

Long-term memory is built by adjusting the syn-

aptic weights and biases of the network. In each time

step and training cycle, one more piece of informa-

tion is embedded into these parameter values. Once

the training of the network is completed, the whole

information contained in the training data set is stor-

ed as the final adjustment of the weights and biases.

To extract local and global process features at least

two hidden layers are required. This enables the neu-

ral network to analyze patterns that evolve over time.

The signal flow through the neural network in

Fig. 2 may be summarized as

 (5)

with J(L) denoting the number of neurons j(L) in layer

L, representing the weight for the signalw
j (L) j (L 1)

from neuron j(L–1) in layer L – 1 to neuron j(L) in layer

L, and being the bias of neuron j(L) in layer L.b
j (L)

Figure 2. Focused time lagged feed-forward network

2.2.2 Data conditioning

A further prerequisite for the neural network is that it

must be properly sensitive to fluctuations in the input

signals. That is, a proper change in the value of an

input signal to a neuron should generally lead to a

noticeable difference in the neuron output. This is

ensured if the neuron input signals preferably meet

the effective part of the activation function (.). For

the logistic sigmoid function from Eq. (3) the

effective part may be defined as x [xmin, xmax] with

and being a prescribed minimum distance of the

activation function (x) from its limits zero and

unity, see Fig. 3. For example, = 0.01 yields the ef-

fective part x [–ln(99), +ln(99)] [–4.595, +4.595].

Input signals from this interval lead to neuron outputs

y [0.01, 0.99]. Fluctuations of input signals with

values far outside the effective part virtually do not

affect the further signal processing. In this manner, an

impact from statistical outliers is eliminated.

Figure 3. Effective part of the activation function

To be processed properly, the raw data must thus

be preconditioned by applying some normalizing data

transformation. Common methods make use of the

extreme values of the training data set to define a

possible range of signals and subsequently transform

that range linearly to the effective part of the activa-

tion function. Though this is reasonable for analyzing

data with a bounded value range, e.g. for controlling

purposes, it may cause problems when processing

statistical data. If the data bank consists of a small

random sample as envisaged herein, there exists non-

negligible probability that further sample elements

may lie beyond the extreme values of the sample.

According to the statistical estimation theory, these

probabilities must be taken into account. They are of

importance, in particular, in safety assessment. When

applying those common transformations, however,

these input signals which lie moderately outside the

effective part are ignored. Thus, a common normal-

ization with defined extrema is too rigorous in these

cases.

A less restrictive and problem specific data trans-

formation rule can be formulated by incorporating

some statistics. Due to the small sample size only the

first two statistical moments of the sample are em-

ployed. From the original (raw) data values zj, the

mean value z̄ and the standard deviation Z are

computed. Subsequently, the zj are transformed into

y
J (3)

j (3) 1

w
j (4) j (3) v

j (3) b
j (4)

v
j (3)

J (2)

j (2) 1

w
j (3) j (2)

J (1) m 1

j (1) 1

w
j (2) j (1) x

j
b

j (2) b
j (3) ,

2181Proceedings ICOSSAR 2005, Safety and Reliability of Engineering Systems and Structures

z
n 1

z(t
n 1

) x
j

z
n i 1

z(t
n i 1

) x
j i

z
n r

z(t
n r

) x
j m

. (9)

x
j

z
j

z̄
1

Z . (7)

p SN 1

(y)
Z

z̄ . (8)

the input signals xj using the equation

In terms of probability, this circumvents ignoring

input information from a reasonable neighborhood of

the input data set. This can be expressed numerically

by means of the probability Peff with which the

effective part of the activation function in the

neurons of a network is met. The following example

gives representative values of these probabilities.

Again, the effective part of the activation function is

defined by = 0.01. The weights and biases are

assumed to be uniformly distributed in [–1, +1]. The

probability Peff for a neuron of the first hidden layer is

estimated roughly by evaluating the summing junc-

tion in Eq. (2) with standard normal random

variables for the xj and the associated random

weights and biases. If only one input signal x1 is

introduced, a probability of Peff = 0.99999777 is ob-

tained. With a tapped delay line memory that consists

of six input nodes Peff = 0.995743 is computed. For

twelve input nodes the probability decreases to

Peff = 0.9708. And a memory of 24 input nodes still

leads to Peff = 0.8891. These results indicate that the

network can process the input data records properly.

According to the definition of the activation func-

tion, the neuron output and hence the neural network

output can take values y (0, 1). The network

output must thus be transformed into the scale of

the particular problem. For generating process reali-

zations a back-transformation of the network output

y into the scale of the original process values zj from

the observed data record is required. That is, the

envisaged back-transformation involves the inverse

problem of transformation of the original process

values zj into the network input signals xj. To ensure

a proper scale matching between input and output

signals, and to avoid a bias caused by the transforma-

tion rules the back-transformation is formulated as

follows. In a first step, the network output y is

brought into the standardized network input struc-

ture by introducing y in the inverse function of the

standard normal distribution function . TheSN 1

(y)

result is then introduced in a rewritten form of Eq.

(7) to adapt the generated values to the properties of

the original data record. That is, the generated pro-

cess values are determined using the equation

This back-transformation does not restrict the gener-

ated process values p to lie within artificially pre-

scribed bounds.

3 GENERATING PROCESS REALIZATIONS

3.1 Network operation mode

The composed neural network must be supplemented

with a suitable operation mode for being able to

perform a process simulation. The starting point is

the following basic situation, see Fig. 4, involving

univariate processes. The process realizations consist

of ordered sequences of real numbers zn. The order is

given by the time axis. The network input signals

xj, ..., xj–m, see Fig. 2, are thus the transformed

process values at the previous r = m + 1 successive

points in time tn–r, ..., tn–1. Specifically,

Figure 4. Process value prediction

The tapped delay line memory of that network is

of order r. The single network output y then yields

the predicted value pn of the process at the present

time tn.

An application of this prediction scheme leads to

the operation mode of a one-step prediction. This is

generally initiated by the last observed sequence of

process values as input vector. Exclusively observed

values are fed to the neural network to predict only

one subsequent process value, see Haykin (1999).

That is, the neural network generates the process

value for the time step tn. And the prediction for tn+1

is made not until the observation at tn is available.

The time horizon of that network prediction is thus

only one step. The accuracy of one-step predictions

is quite high. Applications may be found in the

forecasting of financial market developments, see

Giles et al. (2001) and Li and Kozma (2003). Also,

initial attempts to exploit the capability of this

2182 © 2005 Millpress, Rotterdam, ISBN 90 5966 040 4

procedure for process prediction in engineering have

been made. For instance, More and Deo (2003) have

presented a neural network model for the prediction

of maximum wind speeds for one day, one week, and

one month.

The restriction to a time horizon of one step,

however, is critical and does not exploit the capa-

bility of a neural network by far. For extending the

time horizon, the following two approaches may be

pursued. First, the envisaged time horizon may be

incorporated directly into the neural network by

furnishing the output layer with several neurons. The

number of output neurons then determines the time

horizon. This is advantageous for predicting short

data sequences, for example, the development of the

concrete strength over the first 28 days, see Lee

(2003). The second approach involves a recursive

application of the network in Fig. 4. Specifically, the

network prediction for the process value at tn is used

as an input signal for predicting the process value at

tn+1. That is, the network predictions are fed back to

the input layer instead of using observed data. A

step-by-step marching in this manner then yields a

long sequence of predicted process values as a

first advancement. The time horizon is not limited

a priori. This meets the requirements for a Monte

Carlo simulation, and is thus chosen as a basis herein.

The associated operation mode is a progressive pre-

diction.

3.2 Single process realizations

In a first step, the progressive prediction mode is

used to generate a single process realization. This

requires a "perfectly trained" network with a zero

prediction error. It is assumed that the network

predictions pn coincide with the observations zn for

all time steps tn. This justifies feeding the network

predictions back to the input layer of a feed-forward

network. The feed-back of the network output is not

activated until the network training is finished. That

is, a recurrent network application is not pursued –

even though it resembles the latter. The precondition

of providing a "perfectly trained" network is satisfied

by training the feed-forward network in Fig. 4 until

the network prediction error vanishes, see Sect. 4.

With regards to a neural network based function

approximation, this procedure represents an excep-

tional case. Ordinarily, it is intended to approximate

a discrete data set by a smooth function that reflects

the essential properties of the data but does not

reproduce subordinated, unimportant, disturbing, or

even spurious data fluctuations. The minimum re-

quirements according to the universal function ap-

proximation theorem then depend on the desired

degree of smoothness of the approximation function.

According to the statistical estimation theory, each

particular data point is important and contributes to

the result of an estimation. Thus, the envisaged simu-

lation must not be performed with smoothed process

realizations, which would lead to erroneous results,

for example, in safety assessment. Furthermore, a

separation of noise as in traditional models cannot be

realized since the neural network procedure is model-

free. That is, the process realizations must be gener-

ated including noise. Hence, the minimum require-

ments according to the universal function approx-

imation theorem are determined by the requirement

that the network must be able to reproduce the

observed data record from the process with no

deviations. This is checked when training the net-

work. The number of neurons in the hidden layers

must be increased until the network prediction error

can be brought to zero by adjusting the weights and

biases. The problem of overfitting, which is signif-

icant in function approximation, is thus not relevant

in network based process simulation.

A neural network with zero prediction error can

reproduce the complete observed data record. For

each particular sequence of process values at the time

steps tn–r to tn–1, the network generates the process

value at tn. If the time steps tn–r to tn–1 represent the

last sequence of the observed data record, the

network predicts the first unknown process value at

tn. A progressive prediction started at the end of the

observed data record then yields a prognosis for the

future behavior of a single process realization, see

Beer and Spanos (2004).

3.3 Simulation initialization

A Monte Carlo simulation of random processes

requires the generation of a sufficiently high number

of process realizations running over a proper period

of time. For that purpose, the algorithm for gener-

ating process realizations must be capable of numeri-

cally reproducing the process characteristics. Accord-

ing to the statistical estimation theory, all information

which may be gathered about the process is con-

tained in the data. Once the neural network is trained,

this information is stored in the adjustment of the

weights and biases. That is, the numerical algorithm

for generating process realizations is defined. A

variety of process realizations can only be produced

by starting the generation with different initial

conditions.

For initializing the neural network based process

generation the starting input vector for the tapped

delay line memory must be defined. These are gener-

ated randomly by being drawn from a smoothed

2183Proceedings ICOSSAR 2005, Safety and Reliability of Engineering Systems and Structures

j (L)(q)
j (L) v

j (L)(q)
J (L 1)

j (L 1) 1

j (L 1)(q) w
j (L 1)j (L)(q) (15)

w
j (L)j (L 1)(q 1) w

j (L)j (L 1)(q)

[w
j (L)j (L 1)(q 1)]

j (L)(q) y
j (L 1)(q) ,

(13)

j (L)(q) e(q)
j (L) v

j (L)(q) (14)e z(t
n
) p

n
, (10)

E
1

2
e 2 . (11)

N

n r 1

z(t
n
) p

n
2 MIN , (12)

empirical first-order distribution of the observed

process record.

4 NETWORK TRAINING

The network training is accomplished based on the

standard method of error back-propagation, see e.g.

Haykin (1999). An observed data record from the

process is used as training data. The aim is to adjust

the free values of the neural network (weights and

biases) so that the network is capable of reproducing

the training data with a sufficient precision. That is,

for each sequence of process values z(tn–r), ..., z(tn–1)

the network is intended to generate a prognosis pn

for the subsequent process value z(tn) with a

minimum prediction error

and error energy

Specifically,

with N being the length of the observed process

record (training data) and r denoting the order of the

tapped delay line memory. Mathematically, Eq. (10)

represents the objective function of an optimization

problem in a multi-dimensional space in which the

weights and biases are the design parameters. The

search for the optimum adjustment of the weights

and biases is realized with the aid of a gradient

descend method operating with a generalized delta

rule. For each predicted process value the prediction

error of the neural network is retraced through the

complete network (back-propagation) to compute

changes of the weights and biases. This is done

iteratively, as described subsequently, until the pre-

diction error approaches the global minimum.

The training starts with randomly initialized

weights and biases uniformly distributed in the inter-

val [–1, +1]. This ensures that the training data meet

the effective part of the activation functions of the

neurons to a high percentage, see Sect. 2.2.2. Initial-

izations using narrower or wider intervals or random

specifications of the weights and biases according to

other distributions did not lead to improved results.

One sequence of r+1 successive process values

z(tn–r), ..., z(tn–1), z(tn) is randomly selected from the

training data with the aid of a discrete uniform distri-

bution over the N – r possible choices. Then, the error

signal e(q) in the current iteration step q is

determined with Eq. (10) and is used to compute the

local gradients E/ wkj in the weight space, propor-

tional to which the weights and biases are to be

changed. Let be the argument of thev
j (L)(q)

activation function in neuron j(L) of layer L and
j (L)

 denote the neuron output of neuron j(L–1) iny
j (L 1)(q)

the previous layer L – 1. The new weights for the

next iteration step are then

with

for the neuron j(L) = 1 in the output layer, and

for the neurons j(L) in layer L. Hereby, the biases

 are treated as weights for constant in-b
j (L) w

j (L) j (L 1)

put signals yj
(L–1) = +1 from the previous layer L – 1.

The parameters and are introduced to control the

numerical behavior of the iteration. Whereas the

learning rate > 0 determines the degree with which

the actual error gradients effect the weight change,

the momentum factor [0, 1) acts as a delay

parameter in the weight adjustment.

When the weight adjustment in iteration step q is

completed, the next sequence of r+1 successive

process values z(tn–r), ..., z(tn–1), z(tn) is randomly

selected to proceed with the weight adjustment in

iteration step q + 1. This procedure of iteratively

adjusting the weights and biases is referred to as

sequential training mode, which possesses the ad-

vantage of being stochastic in nature. This induces a

good performance in the search for the global min-

imum of the objective function.

To assess the network training results, various

termination criteria may be defined. For example, the

training may be terminated when the relative weight

change or the prediction error becomes sufficiently

small. Herein, the prediction error is selected as ter-

mination criterion as this is intended to be zero for

process simulation. For an optimal network config-

uration, the prediction error approaches zero asymp-

totically with progressive training. The determination

of a particular appropriate structure of the network,

2184 © 2005 Millpress, Rotterdam, ISBN 90 5966 040 4

S()
1 2

2

n
2 2

2
n

2

. (16)

however, is problem dependent. The number of

layers, neurons in each layer, and the memory order r

have to be specified iteratively, too. Depending on

the training result and the quality of the network pre-

diction of the trained neural network, the suitability

of the particular network structure may be assessed.

5 NUMERICAL EXAMPLE

The capability and the features of the neural network

based process simulation are shown in a numerical

example. A numerically generated time series of a

random process with defined properties is taken as

the basis. This enables an evaluation of the network

simulation result not only with respect to the

statistical properties of the input data record, but also

with respect to the actual process characteristics.

An ARMA model of order 25 is applied to gen-

erate a long record of a stationary ergodic Gaussian

process with the Kanai-Tajimi-like power spectrum

The parameters are selected as = 5, = 0.25, and

n = 10 rad/s–1. The curve of this spectrum is plotted

as a normalized target spectrum in Figs. 7 and 8. The

step width for the process values is t = 0.0628 s.

For the neural network based simulation a subse-

quence of only 50 successive values from the gener-

ated time series is taken as the basis. An appropriate

network architecture is found with a tapped delay

line memory of order 12 and two hidden layers with

13 and 7 neurons, respectively. This network pos-

sesses a total of 275 free values (weights and biases),

which are adjusted iteratively via error back-prop-

agation during the network training. The develop-

ment of the prediction error with proceeding net-

work training is shown in Fig. 5. After 80,000 iter-

ation steps the error remains under 10–6.

The trained network is applied to generate long

process realizations initialized by randomly generated

"seed" vectors. The quality of these realizations is

evaluated by statistically comparing with the training

record as well as with the actual, underlying, process.

Mean value and standard deviation show a good

agreement; see Table 1. Also, the empirical first-

order distribution functions run close to each other

with a smooth curve from the network prediction,

see Fig. 6. The deviation from the underlying

distribution at the left end of the curves results from

a process value concentration in the training record,

which is reflected in the network prediction. The

figure shows the complete value range of the net-

work prediction. Homogeneity tests and goodness-

of-fit tests yield small rejection probabilities for the

H0 hypothesis. With regard to the training data the

distribution of the network prediction is rejected

with probability PKS = 0.024 according to the

Kolmogorov-Smirnov test and with = 0.028P 2

according to the chi-squared test. The underlying

Gaussian distribution does not lead to significantly

better results with the rejection probabilities

PKS = 0.000 and = 0.217.P 2

Figure 5. Prediction error decrease during network training

Table 1. Comparison of mean values and standard deviations

mean value µ standard deviation

network prediction – 0.007 0.176

training record – 0.001 0.169

underlying process 0.000 0.174

Figure 6. First-order distribution functions

Further, spectral density estimations are generated

from the training record and from the network

prediction via averaged periodograms over several

subsequences of 10 successive time steps. Again, the

2185Proceedings ICOSSAR 2005, Safety and Reliability of Engineering Systems and Structures

curves for the network prediction and for the training

record show a good agreement, see Fig. 7. A com-

parison with the target spectrum shows reasonable

deviations owing to the short training record.

Figure 7. Spectral density estimations – one network based

simulation

In an expanded study, ten different, non-over-

lapping training records of 50 values each are taken

from the original process record from the initial

ARMA application. For each of these training re-

cords a neural network based simulation is carried

out. As above, spectral density estimations are gener-

ated for each training record and each prognosis

record via averaged periodograms over subsequences

of 25 process values. Then, the obtained ten spectral

density estimations for the training data and for the

prognosis data are again averaged, see Fig. 8. The

resulting, averaged spectral density curves document

an adequate quality of the network with regard to the

training data. Moreover, the deviations from the

target spectrum are now much smaller. This indicates

that the neural network has recognized the essential

characteristics of the underlying process and that the

network prognosis converges towards the exact

solution in mean sense.

Figure 8. Spectral density estimations – averaged over ten

network based simulations

6 CONCLUSIONS

Neural networks may represent a viable approach for

simulating stochastic processes in various engineering

fields. They are particularly powerful in cases in

which various properties of the process cannot be

identified or specified precisely. Contrary to tradi-

tional methods, a model specification is not required.

Moreover, neural networks possess a higher intrinsic

complexity than traditional simulation models. Their

numerical efficiency is thus lower for simple problems

but can be expected as being higher for complicated

ones.

Further developments of the presented procedure

may focus on extensions for applicability to non-

stationary and multivariate problems.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of

the Alexander von Humboldt-Foundation (AvH) and

of the Office of Naval Research (ONR), USA.

REFERENCES

Beer, M. & Spanos, P.D. 2004. A Neural Network Approach

for Representing Realizations of Random Processes.

Proceedings 9th ASCE Specialty Conference on Probabi-

listic Mechanics and Structural Reliability. Albuquerque,

NM, July 2004, CD-ROM, Doc. 04_104.

Bishop, Ch. M. 1995. Neural Networks for Pattern Recog-

nition. Oxford: Clarendon Press.

Giles, C.L., Lawrence, S. & Tsoi, A.C. 2001. Noisy Time

Series Prediction using a Recurrent Neural Network and

Grammatical Inference. Machine Learning Vol. 44:

161–183.

Haykin, S. 1999. Neural Networks: a comprehensive founda-

tion. Upper Saddle River, NJ: Prentice Hall.

Lee, S.-C. 2003. Prediction of concrete strength using artificial

neural networks. Engineering Structures Vol. 25: 849–857.

Li, H. & Kozma, R. 2003. A Dynamical Neural Network

Method for Time Series Prediction Using the KIII Model.

Proceedings of the International Joint Conference on

Neural Networks IJCNN. Portland, OR, 2003. IEEE press:

347–352.

More, A. & Deo, M.C. 2003. Forecasting wind with neural

networks. Marine Structures Vol. 16: 35–49.

Schuëller, G.I. & Spanos, P.D. (eds) 2001. Monte Carlo simu-

lation: proceedings of the International Conference on

Monte Carlo Simulation. Monaco, June 18–21, 2000.

Lisse, Exton, PA: A.A. Balkema.

2186 © 2005 Millpress, Rotterdam, ISBN 90 5966 040 4

