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We present an algorithm, and a 2D implementation for a fully automatic
hp-adaptive strategy for elliptic problems. Given a mesh, the next, optimally
refined mesh, is determined by maximizing the rate of decrease of the
hp-interpolation error for a reference solution. Numerical results confirm
optimal, exponential convergence rates predicted by the theory of hp methods.
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1. INTRODUCTION

The goal of this research is to work out a fully automatic hp-adaptive strategy
that would deliver meshes with a minimum number of degrees of freedom
(d.o.f.) in the full range of error level, especially in the preasymptotic range.

This is a highly nonlinear and non-convex problem. Ideally, we would
love to have a mesh optimality condition expressed in terms of local mesh
size h and order of approximation p. After all, algorithms based on opti-
mality conditions are among the most efficient methods in optimization.
For h-adaptive methods, such optimality criteria are based on the notion of
mesh density functions, and lead to the error equidistribution principle [5].
Examples of such efforts can be found recently, e.g., in [14, 17].

Most of commercial implementations2 of various versions of hp finite

2 Except for PHLEX, see [12].

element methods, see Introduction in [20], rely on a-priori information
about corner and edge singularities [2, 20], or boundary layers, see [20, 13],
and begin the solution process with a generation of judiciously constructed
initial meshes like the geometrically graded meshes of Babuška, or Shiskin type
meshes for handling the boundary layers. Once the mesh is known, uniform p
refinements are made. In more sophisticated implementations, adaptive
p-refinements are used. If the nature of the singularity is known a priori, these



techniques are very effective and difficult to beat. In fact, optimal meshes may
deliver exponential rates of convergence (in terms of number of d.o.f.) without
the use of higher order discretizations, see e.g., [11].

The situation becomes less clear, if the regularity results are not at
hand. An unoptimal initial mesh, followed by p-refinements, may lead to
meshes that deliver results worse than than standard h-adaptive methods.
Years ago we heard from Prof. Oleg Zienkiewicz that, for error levels
1–5% (measured in energy norm relative to the norm of the solution), the
h-adaptive meshes of quadratic elements are the best, and there is little
need for any extra sophistication. Indeed, for many practical problems, the
quadratic elements offer probably the best balance between the complexity
of coding (one d.o.f. per node, no need for orientation of nodes) and the
results they can deliver. We will return to this issue in the subsequent sec-
tions of this work. Attempts to correct an inefficient initial mesh through
h refinements, have led to methods that perform h and p-refinements
interchangeably, see e.g., the Texas Three Step strategy [15, 16, 6]. The
resulting meshes are easy to obtain but, in general, do not lead to optimal
results.

A genuine hp strategy was proposed in [1], where the choice between
the h and p-refinement is based on monitoring local h-convergence rates.
The methodology has recently been applied to solve hyperbolic problems in
[10], in context of discontinuous hp discretizations.

In the presented work, we follow closely the original idea presented in
[18], where the optimal mesh is obtained by minimizing a local projection
error for a reference solution. The optimality of 1D results from [18], has
recently been independently verified in [3] and [19]. The big question is,
how to proceed for 2D and 3D meshes? In [18], following the original
method of Babuška for p method error estimation, optimal meshes were
constructed by minimizing local energy projection errors. The major
problem with the technique is that, optimal refinements of neighboring
elements are very often in conflict with each other. If the minimum rule3 is

3 Order for an edge is set the minimum of the orders for the adjacent elements. Among other
things, this is essential for the commutativity of the de Rham diagram [7].

used, and if from two neighboring elements one wants to be h- and the
other p-refined, the common edge is not refined at all ! This implies that the
mesh optimization problem may be more complicated than just the choice
between the h- or p-refinements.

The method presented in this paper derives from the recent progress in
the understanding of the idea of hp-interpolation [8]. We will begin our
presentation with the 1D case first, and then spend most of our time
(space) presenting the 2D version of the method and illustrate it with
numerical examples. At the end we shall attempt some conclusions and
discuss possible generalizations.
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2. THE hpMESH OPTIMIZATION IN 1D

We begin the presentation of our algorithm with the simplest class of
one-dimensional elliptic problems. Given an interval (0, l), the problem of
interest is stated in the usual variational form as follows:

˛u ¥ ûD+V
b(u, v)=l(v) -v ¥ V

(2.1)

Here V …H1(0, l) is the space of test functions, ûD ¥H1(0, l) denotes a
lift of Dirichlet boundary condition data uD, and b(u, v) and l(v) denote
bilinear (sesquilinear), and linear (antilinear) forms corresponding to a
particular boundary-value problem. For instance, for a boundary-value
problem,

˛ −(a(x) u
−) −+b(x) u −+c(x) u=f(x) x ¥ (0, l)

u=uD x=0

au −+bu=g x=l

(2.2)

the space

V={v ¥H1(0, l) : v(0)=0} (2.3)

and the forms are defined as follows,

b(u, v)=F
l

0
{au −v −+bu −v+cuv} dx+bu(l) v(l)

l(v)=F
1

0
fv dx+gv(l)

(2.4)

Given an hp finite element mesh, and the corresponding finite element
space Vhp … V, the approximate solution is determined using the standard
Galerkin procedure,

˛uhp ¥ ûD+Vhp
b(uhp, vhp)=l(vhp) -vhp ¥ Vhp

(2.5)

We shall assume that data a(x), b(x), c(x), f(x), b satisfy the usual
regularity assumptions to guarantee the optimality of the Galerkin
approximation, i.e., that there exists a constant C > 0 such that the actual
approximation error is bounded by the best approximation error,

||u−uhp || [ C inf
vhp ¥ V

||u−(ûD+vhp)|| (2.6)
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We proceed now with the definition of the hp interpolation. Given an
interval (a, b) ¥ (0, l), and w ¥H1(a, b), we define its (generalized) hp
interpolant whp=Pw by setting up a constrained minimization problem,

˛
whp ¥Xhp(a, b)

whp=w at x=a, b

F
b

a
(w −hp−w

−)2 dxQ min

(2.7)

Here Xhp(a, b) denotes the finite element space corresponding to a finite
element mesh covering interval (a, b). If the intervals are selected to coincide
with finite elements, the notion reduces to the standard hp-interpolation
[7, 8].

The constrained minimization problem is equivalent to the FE
approximation of a local Dirichlet problem for a 1D Laplace problem
defined over interval (a, b).

Minimization of the Interpolation Error. Suppose now that we are
given some function w ¥H1(0, l), and an existing hp FE mesh. We can
determine an optimal hp refinement of the mesh by minimizing the corre-
sponding hp-interpolation error or, more precisely, by maximizing the rate
with which the interpolation error will decrease [18].

As the interpolation is done locally, for each of the elements of the
initial mesh, we can proceed in two steps.
Step 1 (Local): Determine an Optimal Refinement for Each Element. We

choose between the p-refinement and a sequence of competitive h-refinements
that result in the same increase of the number of d.o.f. More specifically, we
assume that the order p may be only increased by one. This implies that
orders p1, p2 for the h-refined element sons must satisfy condition:

p1+p2−1=p (2.8)

Projection problem (2.7) is then solved using the original element with
order of approximation p raised to p+1, and p different FE spaces corre-
sponding to the h refined element with the element sons of order p1 and p2.
Thus, for a linear element, the choice is between a quadratic element and
two linear elements; for a quadratic element, the choice is between a cubic
element and two combinations: linear/quadratic or quadratic/linear
element, and so on.
Step 2 (Global): Determine Which Elements to Refine. Once we have

determined the optimal refinement for each of the elements, we can
compute the corresponding decrease of the global interpolation error
(squared),

C
K
(||(w−woldhp )

−||2K−||(w−w
new
hp )

−||2K) (2.9)
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Here the summation extends over all elements K in the original mesh to be
refined, woldhp and wnewhp denote the old and the new, optimal interpolants, and
the norm is the L2(K) norm. Denoting the element contributions in the
formula above as gK, we follow the optimality criterion derived in [18],
and refine only those elements for which

gK \ 1
3 max

K
gK (2.10)

As each element is given only one d.o.f., gK have the interpretation of the
rates with which the element errors decrease. We invest only in those ele-
ments that bring the best ‘‘interest rates.’’ As we can invest only one d.o.f.
per element, the question is only whether to refine or not.

In other words, the goal of the mesh optimization is to minimize the
interpolation error, and we go after a refinement that produces the greatest
decrease of the cost functional. This can be interpreted as a discrete version
of the steepest descent method, and element contributions in (2.9) are just
discrete equivalents of the components of the cost functional gradient,

Factor 1/3 above is somehow arbitrary and it reflects an integer
version of the method with components of the gradient having been scaled
to change between 0 and 1.5. Rounding to the integer values 0, 1, we refine
all elements for which the gradient component is between 0.5 and 1.5.
Hence the 1/3 factor...

How to Choose the Reference Function? Obviously, the reference
function has to be constructed using the FE solution and possibly the data
to the problem. In [18], for the reference solution, a highly accurate
postprocessed solution, obtained using the Babuška’s extraction formulas
was used. In the present implementation, we employ for the reference solu-
tion, FE solution uh/2, p+1 corresponding to a globally refined mesh, both in
h and p. The idea reflects the fact that the reference solution must resolve
the local scales sufficiently well to allow for making the choice between h
and p. In simpler words, we have to try first both h and p, before we can
dismiss one of the two refinements. Anticipating a soaring critique of our
choice (another academic method...), we defend ourselves up front with
two arguments.

• Solution uh/2, p+1 can (and must) be obtained using a multigrid, or at
least a two-grid solver. The uniformity of the global refinement
allows for an easy and efficient implementation of the two-grid
solver.

• We do not intend to discard the fine mesh solution. On the contrary,
this will be our final solution that we intend to deliver! This implies
that with our optimal coarse mesh, we will shoot for errors essen-
tially larger (5–10%) than the celebrated 1% error level.

The hp Algorithm. The final algorithm described below includes a
simple error estimator where the error corresponding to the coarse mesh is
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estimated simply by computing the norm of the difference between the fine
and the coarse mesh solutions.

begin with an initial coarse mesh
do until exhausted

solve the problem on the current mesh
save data about the current mesh and dumpout the corresponding

content of the data structure arrays
refine globally the mesh, first in h, then in p
solve the problem on the refined mesh, determining new solution uh/2, p+1
determine the (energy) norm of the difference between the two solutions
if the error is acceptable then STOP
use uh/2, p+1 in place of the reference solution to determine optimal

refinements of the current mesh
dumpin the original mesh data and perform the optimal refinements

enddo

Example 1: A Solution with an Internal Layer. We illustrate the
algorithm with the standard model problem,

˛u(0)=c0, u(1)=c1
−u'=f

where load f(x) and Dirichlet data c0, c1 correspond to the exact solution
with an internal layer,

uexact(x)=atan(60(x−p/3)) (2.11)

shifted to the left so that the symmetry is lost. The solution, together with
the corresponding FE solution on an initial mesh of two linear elements is
shown in Fig. 1.
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Fig. 1. Example 1: Exact solution and the corresponding FE approximation on the initial
mesh of two linear elements.
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Fig. 2. Example 1: Stages 1–4 of the optimal hp mesh selection. (a) Reference solutions;
(b) optimal hp interpolations.
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Fig. 3. Example 1: Final, optimal hp mesh.

   3    6   10   13   17   21   24   28   32
nrdof  0.4

  0.7

  1.2
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  6.2

 10.7
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 31.9

 55.0

 94.9 error

start p=1 

start p=2 

start p=3 

p=2,h-adap

SCALES: nrdof^1.00, log(error)

Fig. 4. Example 1: Convergence rates on the linear–log scale.
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SCALES: nrdof^1.00, log(error)

Fig. 5. Example 2: Rates of convergence.
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We impose the error tolerance tol=1 per-cent of the energy norm of the
solution. Figures 2 show first 4 consecutive meshes, with the h/2, p+1 solution
on the left, and optimal meshes on the right. The final mesh with the corre-
sponding solution overlapping exactly the exact solution, is shown in Fig. 3.

The corresponding convergence history on the linear–log scale for
three different initial meshes of two linear, quadratic and cubic elements, is
presented in Fig. 4. The final meshes for all three cases are very similar and
in all three cases we observe better than exponential convergence as
indicated by the superlinear behavior on the linear–log scale.

For comparison, we present in Fig. 4 also the convergence history for
just h-adaptivity (we simply force the algorithm to choose always the
h-refinement) and quadratic elements. For the 1D example, the hp-adaptivity
beats the h-adaptivity by one order of magnitude...

Example 2: A Singular Solution. uexact(x)=x0.6. Error tolerance tol=
1% of the energy norm of the solution.

Again, we start with an initial mesh of two linear, quadratic or cubic
elements. In all three cases we end up with the same, geometrically refined
mesh. The corresponding, exponential convergence rates are represented on
the linear–log scale in Fig. 5, and compared again with h-adaptivity for
quadratic elements. The hp adaptivity again significantly outperforms the
h-adaptivity.

3. THE 2D ALGORITHM
Again, we focus on the standard two-dimensional elliptic problems.

Given a domain W, we define the bilinear and linear forms as follows,

b(u, v)=F
W

3 C
2

i, j=1
aij(x)

“u
“xi

“v
“xj
+C

2

i=1
bi(x)

“u
“xi
v+c(x) uv4 dx

+F
C3

b(x) uv ds

l(v)=F
W

f(x) v dx+F
C2 2 C3

g(x) v ds

(3.12)

with the corresponding boundary-value problem,

˛−C
2

j=1

“

“xj
1 C
2

i=1
aij(x)

“u
“xi
2+C

2

i=1
bi(x)

“u
“xi
+c(x) u=f(x) in W

u=uD on C1

C
2

i=1
aij(x)

“u
“xi
=g(x) on C2

C
2

i=1
aij(x)

“u
“xi
+b(x) u=g(x) on C3

(3.13)
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where C1, C2, C3 denote the Dirichlet, Neumann, and Cauchy parts of the
boundary.

We shall assume that domain W can be covered exactly with (possibly
curvilinear, isoparametric) finite elements or, equivalently speaking, we
shall neglect the error due to the approximation of the geometry.

We define now the two-dimensional version of the (generalized)
hp-interpolation. Given a function w defined on an hp finite element mesh,
we proceed in three steps.
Vertex (Linear) Interpolant. We construct the standard linear

Lagrange interpolant w1hp of function w using its values at vertices a,

w1hp(a)=w(a) (3.14)

Edge Interpolant. For each edge e in the mesh, we project the differ-
ence w−w1hp onto the space of edge shape functions Vhp(e), vanishing at the
edge endpoints,

wehp ¥ Vhp(e)

||w−w1hp−w
e
hp ||H1/200 (e) Q min

(3.15)

This is equivalent to solving a 1D system of equations,

3w
e
hp ¥ Vhp(e)
(wehp, vhp)H1/200 (e)=((w−w

1
hp), vhp)H1/200 (e) -vhp ¥ Vhp(e)

(3.16)

The global edge interpolant w2hp is then constructed as the sum of finite
element lifts of the edge interpolants wehp,

w2hp=C
e
ŵehp (3.17)

Interior Interpolant. For each element interior K, we project the dif-
ference w−w1hp−w

2
hp onto the space of element bubble functions Vhp(K),

w3hp ¥ Vhp(K)

||w−w1hp−w
2
hp−w

3
hp ||H10(K) Q min

(3.18)

This is again equivalent to solving a system of equations,

˛w
3
hp ¥ Vhp(K)

F
K
Nw3hp Nvhp dx=F

K
N(w−w1hp−w

2
hp) Nvhp dx -vhp ¥ Vhp(K)

(3.19)
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The final hp interpolant is now defined as the sum of the vertex, edge and
element interiors interpolants,

whp=w
1
hp+w

2
hp+w

3
hp (3.20)

If K is an element sharing (whole) edge e, the H1/200 (e) inner product and
the corresponding norm can be understood in the following sense,

(u, v)H1/200 (e)=F
K
Nũ Nṽ dx, ||u||2H1/200 (e)=(u, u)H1/200 (e) (3.21)

where ũ denotes the harmonic extension of function u defined on edge e,
extended by zero to the rest of the boundary of element K. It has been
shown in [8] that the hp interpolation operator P: wQ whp is well defined
and continuous on space H1+E(W),

||Pw||H1 [ C ||w||H1+E (3.22)

with constant C independent of both element size h, and order of approxi-
mation p. As the interpolation preserves functions from finite element
space Xhp, this leads to the optimality (up to the E) of the interpolation
error estimate,

||w−Pw||H1 [ C inf
whp ¥Xhp

||w−whp ||H1+E (3.23)

The result motivates our mesh refinement strategy based again on the idea
of minimizing the interpolation error for a reference solution.

The H1/2
00 Norm. It has been shown in [8], that any function w ¥H

1
2+E

that vanishes at the edge endpoints, belongs to space H1/200 (e). This justifies
the edge interpolation procedure for edges whose both endpoint vertices
are unconstrained. For an edge with a constrained vertex (‘‘hanging node’’),
however, the corresponding vertex node value comes from the interpolation
along the constraining, ‘‘big’’ edge, and may not match the value of the
function being interpolated. Consequently, the edge projection problem is
ill-posed. In the practical implementation we commit much bigger crime,
replacing the H1/200 norm with a weighted H10 norm,

||u||2e=F
e

1“u
“s
22 1 “s
“t
2−1 ds=F

1

0

1“u
“t
22 dt (3.24)

Here x=x(t), t ¥ (0, 1) is the FE parametrization for the edge, and

“s
“t
== C

2

i=1

1“xi
“t
22 (3.25)
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Note that this weighted H10 norm scales with the length of the edge the
same way as the H1/200 norm. As for the reference solution we employ again
the finite element solution uh/2, p+1 corresponding to the globally refined
mesh, the edge projection (at least for affine elements) takes place only for
piecewise polynomials, and the choice between the two norms results
simply in slightly different metrics. We have actually implemented both
norms and studied the corresponding edge projection problems. We do
not present a detailed evidence here, but for order p < 10, the difference
between the two projections is insignificant, and the obtained finite element
meshes are identical. The difference between the two norms, however,
grows with p and, for higher order, spectral-type implementations, the
choice of the norm will become essential. We also emphasize that the pres-
ence of the weight is essential. Without it, the edge part of the algorithm
presented next, fails and delivers nonoptimal meshes.

Minimization of the Interpolation Error in 2D. We are ready now to
discuss steps of the 2D mesh optimization algorithm. As the 2D imple-
mentation is much more technical than in 1D, we shall present one step at
a time, and illustrate them with an example of an actual hp mesh. The
illustrations will correspond to a 2D version of the problem with an inter-
nal layer presented in the previous section. We select for domain W a unit
square, and set up the exact solution as

uexact(x)=atan(60r) (3.26)

where r is a polar coordinate with origin at (1.25; −0.25). We shall solve
simply the Laplace equation with Dirichlet boundary conditions imposed
at edges x=0, y=1, and Neumann boundary conditions on the rest of the
boundary.
Step 1: Preliminaries. Suppose we start with a mesh shown in Fig. 6.

We begin by saving necessary data on the mesh. This includes the list of
elements in the mesh, and the corresponding orders of approximation, and
the list of mid-edge nodes. We solve then the problem on the mesh and
save the solution in the data structure arrays. If this is a model problem for
which the exact solution is known, we compute the global error and output
it, together with the number of d.o.f., for a further graphical postprocess-
ing. The mesh shown in Fig. 6 has only 160 d.o.f. and delivers a solution
with 37.4% relative error, measured in H10-norm, with respect to the
H10-norm of the exact solution.
Step 2: Global hp-Refinement, Error Estimation. Determining Element

Isotropy Flags. We perform a global, isotropic hp-refinement, breaking
each element into four sons, and then raising the order of approximation
for each node by one. New d.o.f. are initiated in such a way that the
refined mesh still supports the FE solution on the initial, coarse mesh. We
save the existing d.o.f. corresponding to the coarse mesh solution, and
solve the problem on the fine mesh. We estimate the error for the coarse
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Fig. 6. The 2D hp algorithm: an initial, coarse hp mesh.
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Fig. 7. The 2D hp algorithm: the fine mesh with the corresponding FE solution.
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mesh by computing the norm of the difference between the coarse and fine
mesh solutions. The fine mesh, together with the corresponding FE solu-
tion, is shown in Fig. 7. The efficiency index for the error estimate, defined
as the difference of the actual error and the estimated error, relative to the
exact error, for the presented case equals 0.974. Finally, we save the fine
mesh solution in an element fashion. During the error computation, we
determine the element isotropy (h-refinement) flags. This is done in the
following way. Let e(x)=ê(t) denote the error function, i.e., the difference
between the coarse and fine mesh solutions. The H10 element error,
expressed in master element coordinates t looks as follows,

F
1

0
F
1

0

1g11 1
“e
“t1
22+g22 1

“e
“t2
22+2g12

“e
“t1

“e
“t2
2 J dt1 dt2 (3.27)

where

gij=C
2

k=1

“xk
“ti

“xk
“tj
, J=det 1 “xi

“tk
2

The anisotropy flag is set to 1, which indicates that the element should be
refined across the t1 axis only, if two conditions are met:

• the contribution corresponding to the off-diagonal term g12 in the
element metric is less (in absolute value) than 1% of the sum of the
main diagonal terms;

• the contribution corresponding to g22 term is less than 1% of the one
corresponding to g11.

Analogously, we identify the other anisotropic case with flag 2, otherwise
the element is declared as a candidate for an isotropic refinement only.
Clearly, the criterion favors the isotropic refinements and anticipates the
need for anisotropic refinements only in such extreme cases as one-dimen-
sional test cases, or solutions with one dimensional boundary layers aligned
with the mesh.
Step 3: Determining Optimal Edge Refinements. We loop through the

edges in the initial mesh, and use the fine mesh solution to determine the
optimal refinement for each edge in the mesh. We use the weighted H10
norm to choose between the p-refinement and a competitive h-refinement,
using the 1D algorithm. Two possibilities occur:

• The p-refinement wins. We save the d.o.f. for the edge interpolant,
i.e., projection of the difference of the fine mesh solution and its
linear interpolant, onto the space of edge shape functions corre-
sponding to the p-refinement. We save the corresponding decrease of
the edge interpolation error. We do not discard the most competitive
h-refined edge projection. Instead, we use the corresponding two
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elements mesh as a starting point to determine new (non-competi-
tive, greater) orders of approximation for the new mid-edge nodes in
such a way, that the error of the corresponding projection matches
that for the p-refined element. We save the corresponding d.o.f. for
the h-refined element. We label the edge with flag=1.

• The h-refinement wins. We save the d.o.f. for the edge interpolant
corresponding to the h-refined edge, the corresponding optimal,
orders of approximation for the new mid-edge nodes, and the
decrease of the edge interpolation error. We label the edge with
flag=−1.

In both cases we also save d.o.f. corresponding to the projection on the
coarse mesh shape functions. This is for initiating the d.o.f. for edges that
will not be refined.

Finding the optimal distribution of orders of approximation p for the
refined edge falls into a general class of finding optimal p-refinements for a
given mesh. We follow here the standard simple strategy by determining
element contributions to the global error, and increasing the order of
approximation in all elements (in this case, maximum two only...) whose
contributions are greater than a prespecified percentage4 of the maximum

4 70% for all presented numerical results.

contribution. Then we try out the new mesh, compute the corresponding
projection error, and continue until we reach a limiting, prespecified
minimal error decrease. Obviously, the orders for the new mid-edge nodes
do not exceed that of the p-refined edge, and due to the nested spaces, we
are guaranteed to match the error for the p-refined edge.

And a final remark on the edges with constrained endpoint vertex
nodes. Yes, we ‘‘cheat’’ here, as the corresponding vertex values result from
the constrained approximation, and do not match those of the projected
function (reference solution). For straight edges (constant weight) linear
functions are orthogonal to edge shape functions in H10 product, and the
‘‘cheating’’ does not affect the corresponding projections, but it does change
the corresponding error decrease rate.
Step 4: Global Edge Minimization Problem. Following the 1D strat-

egy, we determine the maximum error decrease rate, and identify all edges
with error decrease equal at least to one third of the maximum one. These
are the edges that we intend to refine. We label all remaining edges with
flag=0.
Step 5: Optimal h Refinement of Elements. We use the information about

the optimal refinement for edges to construct an optimally h-refined mesh.
An element is broken into four (isotropic refinement) or two (anisotropic
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Table I. The 2D hp Algorithm: Ultimate Edge Refinement Flags

label desired refinement actual refinement

− 1 h-refinement h-refinement
1 p-refinement p-refinement

− 11 p-refinement h-refinement
0 no refinement no refinement

− 10 no refinement h refinement

refinement) element sons, if at least one of its edges has flag=−1, i.e.,
wants to be h-refined. In this way we give a priority to h refinements over
p-refinements. The choice between the isotropic and anisotropic refinement
is based on the isotropy flags determined earlier. At this point, all edges
labeled with −1 got broken but, due to the mesh regularity assumptions,5

5 We use the standard one-irregular meshes strategy.

some edges with labels 1 or 0 got broken as well. More precisely, we end up
with five kinds of edges, labeled as shown in Table I.
Step 6: Initiating d.o.f. for Edges with Label=−10. At this point, we

initiate the d.o.f. for all refined edges with the values saved earlier. The
only case for which we have not got values at hand is the case of edges that
were not supposed to be refined in any way but that got h-refined anyway.
We revisit them one more time and determine the minimal orders of
approximation for the new mid-edge nodes by requesting that the corre-
sponding projection error matches the error corresponding to the coarse
mesh within a prescribed tolerance tol. The tolerance is determined by
taking 1% of the anticipated drop in the global error and dividing it by the
number of the label 10 edges,

tol=0.01
; e, label=−1, 1, −11 edge error decrease

number of edges with label 10
(3.28)

The 1% is again completely arbitrary and could be replaced with more or
less stringent parameter. The criterion reflects our conviction that, for
edges contributing with small error, it does not make sense to match
exactly the existing error and we can allow for a slight increase of the local
error as long as the global error is under control. Figure 8 presents the
mesh obtained after the optimal refinement of edges. Note that the orders
of approximation for element middle nodes at this point are incidental
(inherited from the coarse mesh).
Step 7: Determining Optimal Orders of Approximation for the Refined

Element Interiors. At this point, the topology of the mesh has been
determined, and we need only to determine new, optimal orders for the
element interiors. This is done locally, one (coarse mesh) element at the
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Fig. 8. The 2D hp algorithm: mesh after edge refinements.

time. In essence, we are solving a Laplace equation (H10-projection
problem) with Dirichlet boundary conditions,

F
K
(N(uh/2, p+1−û−uopt))2 dx Q min (3.29)

where û is a lift of already known interpolant along the optimally refined
edges, and uopt denotes the unknown, optimal p FE solution to the
problem. We solve this p-adaptivity problem the same way as the 1D edge
problem discussed above. A few details:

1. There are three distinct cases illustrated in Fig. 9 below, a p(only)-
refined element, an element refined anisotropically, in either
horizontal or vertical direction, or an element refined isotropically,
into four element sons. The corresponding, unknown orders of
approximation are shown in the figure. We assume that the orders
for edges are determined using the minimum rule.

2. We begin the optimization process with values that are implied by
already known orders on the element boundary and the min rule.
If the element is declared to be isotropic, we begin with an isotro-
pic (if possible), initial order of approximation.

3. Having solved the problem for given p’s, we compute element con-
tributions to the error, and increase the order of approximation
in all (one, two, or four) subelements that contribute within 70%
of the max error. We allow for the order to grow anisotropically,
according to the directional contributions to the subelement error.

4. We monitor the error decrease rate,

D=
||uh/2, p+1−û−uold ||2−||uh/2, p+1−û−unew ||2

ndofnew−ndofold
(3.30)
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Fig. 9. The 2D hp algorithm: Step 7—determining optimal orders of approximation for
refined elements.

where uold, unew stand for the previous and current solution to
projection problem (29), and ndofold, ndofnew denote the corre-
sponding number of d.o.f. interior to the refined element.

5. The order of approximation cannot exceed that of the fine mesh,
supporting solution uh/2, p+1.

6. The local optimization problem is stopped when two conditions
are satisfied:

• The projection error is smaller that the projection error corre-
sponding to the unrefined element and the current order of
approximation.

• The error decrease rate is less or equal than 1/3 of a prespecified
rate D0.

In order to be consistent with the edge part of the algorithm, D0
should be equal to the maximum rate for all refined elements in the
mesh. This would be excessively expensive, and we select for D0 the
rate corresponding to the element for which edge error decrease
rates were maximal. This is possible, since the edge minimization
problems were solved for all edges. Once we know the element, we
run the algorithm for determining the optimal order p, and record
the corresponding maximal error decrease rate D0.

Step 8: Enforcing the min Rule. It may happen that, once the element
orders have been determined, the edge orders do not conform anymore to
the min rule. We increase then the edge order, setting it to the minimum of
the orders for the adjacent elements. In the end we obtain the next opti-
mally refined hp mesh illustrated in Fig. 10.
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Fig. 10. The 2D hp algorithm: next optimal mesh.

Final hp algorithm is the same as in 1D. Starting with an initial mesh,
we continue the iterative process until we meet an error criterion. This
usually means that the coarse mesh should deliver an error within the range
of 5 to 10%, as we have at our disposal the fine mesh solution (we stop
after the coarse error estimation, i.e., after Step 2).

Example 3: Problem with the Internal Layer. We start with the
example that we have used to illustrate the hp algorithm with. Figure 11 pre-
sents the convergence history for three starting initial, uniform meshes of
only four elements, with p=1, 2, 3. The rates are presented on the linear–log
scale.

The results are compared with a simple h-adaptive method for a mesh
of quadratic elements, and a strategy in which we refine all elements that
contribute with errors within 70% of the max contribution. More precisely,

   9  423  837 1251 1665 2079 2493 2907 3321
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p=2,h-adap

SCALES: nrdof^1.00, log(error)

Fig. 11. Example 3: Convergence history for the hp refinements compared with the conver-
gence history for an h-adaptive strategy with quadratic elements.
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we estimate the error by computing the norm of the difference between the
coarse mesh and fine mesh solutions. Here the fine mesh is obtained by
performing only a global h-refinement. Representing the total error as the
sum of element contributions,

error2=C
K

g2
K (3.31)

we refine all elements for which
g2

K \ 0.7 max
K

g2
K

Fig. 12. Example 3: Final hp meshes.
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Two comments:

• The results for all three hp meshes are very close to each other and
indicate a little sensitivity with respect to the choice of the initial
mesh. The slight difference in the number of d.o.f. may be attributed
to the fact that the presented hp algorithm lacks p unrefinements.
The ultimate meshes are also very similar to each other as it can be
seen on Fig. 12.

• The h-adaptivity is very competitive in the preasymptotic range.
In fact, it even slightly wins for a range of number of d.o.f.. Even-
tually though, the hp method starts converging exponentially,
whereas the h method settles down with an algebraic rate of conver-
gence (equal 2). The algebraic rate can be easier observed on Fig. 13
that represents the same convergence history on log–log scale.

Example 4: A Smoother Problem. At this point, we may start won-
dering whether the whole hp sophistication pays off?! After all, we are here
after a good coarse mesh. Well, the results depend very much on the
problem. For example, if we consider the same problem but with a
smoother solution,

uexact(x)=atan(20r) (3.32)

the convergence history presented in Fig. 14 is more favorable for the hp
algorithm, also in the preasymptotic range.

Both algorithms have started with the same initial mesh of quadratic
elements. The final meshes, delivering the 1% error are shown in Fig. 15.

Example 5: The L-Shape Domain Problem. In this standard test case
for the hp methods, our algorithm performs very well. The results are again
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SCALES: log(nrdof), log(error)

Fig. 13. Example 3: Convergence history for the hp refinements and h refinements on
log–log scale.
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Fig. 14. Example 4: Convergence history for the hp refinements and h refinements on
linear–log scale.
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Fig. 15. Example 4: Optimal hp and h meshes.
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independent of the initial mesh, as shown in Fig. 16. The hp method out-
performs the h refinements but, again, only in the asymptotic range. In the
preasymptotic range, the errors are comparable.

A typical, optimal hp mesh, presented in Fig. 17, coincides practically
with the geometrically graded meshes of Babuška, and the linear graphs
presented in Fig. 16, on scale N1/3, log error, indicate the optimal, expo-
nential convergence rates predicted by the theory, see [20]. The results of
the hp mesh optimization are independent of the starting order of approx-
imation. The algorithm starts choosing the h-refinement only when p=3.
If we begin with linear or quadratic elements, in the first couple of steps
p-refinements are selected, with the order increasing to p=3. Conse-
quently, the three convergence history curves for the hp-adaptivity in
Fig. 16 overlap each other.

4. FINAL REMARKS

We have presented a new, fully automatic, genuine hp-refinement
strategy for a class of boundary-value problems that can be solved with
H1-conforming, i.e., continuous hp FE discretizations. The method is based
on an interaction between two meshes, a coarse hp mesh, and a fine hp
mesh obtained from the coarse mesh with a uniform hp-refinement. For
quads this means that each element is refined into four element sons, and
the order of approximation for each node in the mesh is increased by one.
Having solved the problem on the fine mesh, we construct a new, optimal
coarse mesh by minimizing the coarse grid hp-interpolant of the fine mesh
solution.

The mesh has been tested on a number of 1D and 2D model problems,
delivering optimal (exponential) convergence rates, consistent with the
theory of optimal hp discretizations. Most importantly, the method delivers
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Fig. 16. Example 5: Convergence history for the hp refinements and h refinements on
N1/3-log scale.
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Fig. 17. Example 5: Optimal hp mesh for the L-shape domain problem.

meshes that are optimal in the full range of error level, including very
coarse meshes.

The methodology is problem independent and can be coded as a ‘‘black
box,’’ and applied to solve different classes of problems as long as the
minimization of the error in the H1-norm is relevant.

The methodology extends to the 3D case, although theoretical foun-
dations for 3D hp interpolation estimates are still missing. We are in
process of coding a 3D version of the presented method and hope to
present it soon. In the spirit of the de Rham diagram, see [7, 8] and
the literature therein, the work can (and will be) extended to H(curl) or
H(div)-conforming hp discretizations. This is especially important for
applications to Maxwell’s equations, where the complex nature of sin-
gularities makes the explicit design of optimal meshes virtually impossible.

The method is sensitive to quadrature error. This has forced us to use
expensive adaptive integration schemes, and prevented reporting the CPU
time for the presented model cases. We do not think of the issue being
critical as in the actual industrial problems loads are, most of the time,
piecewise constant.

The methodology requires an efficient implementation, at minimum,
of a two-grid solver. In 3D, the number of d.o.f. will jump from 200 thou-
sand in the coarse mesh to up to 3,4 million in the fine mesh. Without the
solver, the method has no chance for a survival in the ‘‘practical world.’’

The method employs a few parameters which may require a careful
tuning. For instance, we might give a slight preference to the h refinement
when deciding on the optimal refinement for edges. One of the reasons why
the h-adaptive meshes of quadratic elements sometimes deliver slightly
better results, may be explained by remembering that the fine mesh solu-
tion still does not support the full ‘‘spectrum’’ of the exact solution. By
tuning our parameters, we may be able to get a little bit closer to the
h-refined meshes in the preasymptotic range. We have not attempted any
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such tuning in the presented work. According to our present experience,
changing the parameters may result in slightly different refinement his-
tories, but it does not produce dramatic changes in the final meshes.

Coding of the method is a real challenge and it represents a very diffi-
cult test for the data structure supporting hp refinements. We have not
talked about this fundamental issue here at all, as we hope to present soon
a substantially new concept in coding the hp methods [9]. Contrary to
recent 3D implementations, see e.g., [21, 4], we still insist on using one-
irregular meshes with hanging nodes...

In conclusion, we believe that the presented method may help us to
develop a new, competitive tool for solving most difficult, multi-scale
problems in complex 3D geometries.
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Ph.D. Dissertation, Universite de Liege.

5. Demkowicz, L., Oden, J. T., and Devloo, Ph. (1985). On h-type mesh refinement strategy
based on a minimization of interpolation error. Comput. Methods Appl. Mech. Engrg. 53,
67–89.

6. Demkowicz, L., and Oden, J. T. (1996). Application of hp-adaptive BE/FE methods to
elastic scattering. Comput. Methods Appl. Mech. Engrg. 133(3/4), 287–318.

7. Demkowicz, L., Monk, P., Vardapetyan, L., and Rachowicz, W. (2000). De Rham
diagram for hp finite element spaces. Mathematics and Computers with Applications
39(7/8), 29–38.
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