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ABSTRACT: In the paper a new safety concept is presented considering time-dependent data uncertainty of
fuzzy random type. Time-dependent data uncertainty leads to a time variant reliability of structures. The fuzzy
failure probability depending on the time is introduced as measure of the reliability. Based on the -Pf( )
level optimization the fuzzy failure probability is computed by the fuzzy Monte Carlo simulation (FMCS). In
order to decrease the numerical effort of the fuzzy Monte Carlo simulation the fuzzy adaptive importance
sampling method (FAIS) is introduced. An example demonstrates the feasibility of the proposed procedure.

1 TIME-DEPENDENT RELIABILITY

The safety level of structures is not constant during
the lifetime. Time variant effects such as material
damage, deterioration, and corrosion lead to time
variant loadability and structural safety. The
consideration of these effects in the framework of a
safety concept requires a material model as well as a
structural model with time variant parameters. In
most cases this parameters are uncertain. Using the
general uncertainty model fuzzy randomness the time
variant parameters are described as fuzzy random
processes. If the parameters additional fluctuate in
dependency of the spatial coordinates the
mathematical model based on fuzzy random functions

| t = { , } is adapted.X(t)
A fuzzy random function is defined by theX(t)

set of fuzzy random vectors on the fundamental set T

A more detailed mathematical description of fuzzy
random functions is contained in Sickert et al.
(2003), Möller and Beer (2004), and Möller et al.
(2005b).

The easiest understandable concept of safety
assessment is that the reliability of structures can be
calculated from the uncertain structural resistance R
and the uncertain stress . If we follow this idea andS
if the parameters which determine the structural
resistance and the stresses are mathematicallyR S

described by time variant fuzzy random functions a
fuzzy random resistance process ( ) and a fuzzyR
random stress process ( ) result. Using ( ) andS R

( ) the structural reliability can be quantified by theS
fuzzy failure probability which is defined byPf

including the well known probability measure P. The
evaluation of eq. (2) requires time-discretization of

( ) and ( ). At each time point k, ( k) andR S R
( k) are obtained as fuzzy random variables whichS

can be described by the fuzzy probability density
functions and . Preconditioningf R (R( k)) f S (S( k))
the independency of ( ) and ( ) the fuzzy failureR S
probability can be computed using andf R (R( k))

. Due to the definition of a fuzzy randomf S(S( k))
process as fuzzy set of its original functions which
are real random functions the evaluation of eq. (2)
leads to the fuzzy variable ( k) representing thePf
fuzzy failure probability. The computation of ( i)P f
at different time points i results a set of fuzzy
variables ( i). This fuzzy variables are functionalP f
values of a fuzzy process on the fundamental set ,
see e.g. Möller and Beer (2004).

In Fig. 1 a fuzzy random resistance process ( )R
and a fuzzy random stress process ( ) are shown.S
The discontinuity of the fuzzy random resistance
process ( ) at time point St results from e.g.R
rehabilitation or strengthening. As a consequence, the
structural resistance increases. The uncertainty of R
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fX (x, t) fX( s, x) (3)

g(x, ) g(s g , x) 0 (4)

Figure 1. Fuzzy random stress-resistance-representation in time τ

and at time point k is represented by theS
assigned fuzzy probability density functions

and . The fuzzy design pointfR (R( k)) fS (S( k))
is also marked.Gd

In the case that the structural reliability is
influenced by nonlinear structural behavior the
resistance depends on the stress process. Then the
fuzzy failure probability ( i) at time points i hasPf
to be computed in the space of the fuzzy random
basic variables. This space is constructed by means
of the one-dimensional fuzzy random variables X
obtained by the discretization of all fuzzy random
functions . Additionally, real random variablesX(t)
X, e.g. as result of discretized real random
functions X(t), may be accounted for as basic vari-
ables at the same time. Real random variables may
by regarded as special case of fuzzy random vari-
ables with only one original. The space of the fuzzy
random basic variables is subdivided into a fuzzy
survival domain and a fuzzy failure domainX s X f
by the fuzzy limit state surface = 0.g(x, )

Since the fuzzy probability of an event AiP(Ai)
is defined as assessed set of the real-valued
probabilities Pj(Ai) the fuzzy failure probability

( i) at time point i have to be determinedPf
considering all significant originals Xj . EachX
real-valued failure probability may then be
computed with the aid of stochastic fundamental
solutions. In principle, any probabilistic algorithm
may be used as stochastic fundamental solution,
e.g. first order reliability methode (FORM) or
Monte Carlo simulation (see e.g. Schuëller (1997)).

For each fuzzy random variable which is in-X
troduced as basic variable the assigned fuzzy
probability density function has to bef X (x, )
known. With the aid of the fuzzy joint probability
density function the joint behavior isf X (x, )
described considering correlation and fuzzy
correlation. Both the fuzzy joint probability density
functions and the fuzzy limit state surfacef X (x, )

= 0 are fuzzy functions, which are advan-g(x, )
tageously described by means of fuzzy bunch para-
meters ands sg

2 GENERATION OF FUZZY RANDOM
FUNCTIONS

Time-dependent structural parameters (e.g. materi-
al parameters, geometry, loads) with the uncertain-
ty characteristic fuzzy randomness are described by
fuzzy random functions . The functionsX(t) X(t)
can be stationary or non-stationary, homogeneous
or non-homogeneous, Gaussian or non-Gaussian,
depending on the available statistical data and
additional expert knowledge. As introduced in
section 1, fuzzy random functions are described by
the fuzzy correlated set of fuzzy random variables

. Alternatively, fuzzy random functionsX i X(t i)
can be formulated by

fS(S( k))

fR(R( k))

~Gd = Rd - Sd < 0~ ~

~

S, R

~

α = 0
α = 1

ττk

Fuzzy random resistance process R(τ)

Fuzzy random stress process S(τ)

τSt

Rehabilitation/strengthening

~

~
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X(t) f(X i, t) | i 1, ..., n (5)

D ( ) DO 0.0232 ( T i) i corr (6)

Ti
x 2

4 Dc

erf 1 1
Ccr Ci

CO Ci

2

(7)

where the are fuzzy random variables. For eachX i
fuzzy random variable the fuzzy probabilityX i
distribution function as well as the fuzzyF i(x)
probability density function have to bef i(x)
determined. For this purpose it is necessary to
determine the type and the fuzzy bunch parameters

of these functions.s
In the case that a sample with crisp or fuzzy

sample elements is available developed methods are
applied for the fuzzy evaluation of statistical
inference were developed which base on classical as
well as modern statistics, see Möller and Beer
(2004). Bootstrap methods and fuzzy Bayesian
methods are also included. Moment estimators and
maximum likelihood estimators are applied for
point and interval estimators of the distribution
parameters. Assumed distribution types are
assessed with the aid of goodness-of-fit tests. Non-
parametric tests for assessing samples (run test, test
of homogeneity) are also applied.

If all elements of a sample are crisp the statistical
evaluation in most cases is not leading to a unique
result in respect of type and parameters of the
underlying probability distribution function. Two
concepts were developed in order to take account
of this informal uncertainty - the fuzzy parameter
estimation and the non-parametric estimation of the
fuzzy probability distribution.

Moreover, if the sample elements are fuzzy
numbers statistical methods for non-precise data
are applied, see Viertl (1996).

Futhermore, probabilistic models comprehended
in references can be extended in order to consider
informal uncertainty and subjective influences. This
will be explained by the way of an example.

In Thoft-Cristensen (1996) a probabilistic model
is shown which quantifies the corrosion of rein-
forcement steel in concrete caused by chloride
ingress. The decrease of the reinforcement steel
cross section is modeled by the decrease of
diameter D depending on time τ

with the original diameter DO, the corrosion rate
icorr, and the corrosion initiation time Ti. If Ccr is
assumed to be the chloride corrosion treshold and x
is the concrete cover thickness, then the corrosion
initiation time Ti can be computed solving the
differential equation of Fick´s second law of
diffusion.

The diffusion coefficient Dc and the chloride
surface content CO in eq. (7) are important
variables in corrosion estimates. Different improved
models were introduced in last decade in order to
determine Dc as well as CO. Here, a probabilistic
model based on Thoft-Christensen (1996) is
extended. Both Dc and CO are modeled as fuzzy
random variables and . The chlorideD c C O
corrosion treshold Ccr, the initial chloride content
Ci, and the concrete cover thickness x are assumed
to be deterministic.

The mean values of the Gaussian distributed
diffusion coefficient and chloride surface content
are determined in dependence of the grade of
deterioration GD. As result of an inspection of a
bridge experts evaluate the deterioration by the aid
of a linguistic variable using the grades "low",
"medium", or "high". However, the subjective
assessment of different experts leads to different
linguistic values GD. Therefore, the mean values are
modeled as fuzzy variables according to Fig. 2.

Figure 2. Membership functions of the fuzzy mean values
and depending on the grade of deteriorationDc CO

The values with the membership µ = 1 are conform
to the suggestion in Thoft-Christensen (1996).
Also, the standard deviation is taken from there
with the deterministic values σDc = 2.5 mm²/a and
σCo = 0.038 %. As a result of the functional
dependency of on the fuzzy random variablesT i

and according to eq. (7), also, theD c C O
chloride initiation time becomes a fuzzy random
variable .T i

Additional to the corrosion rate icorr isT i
uncertain. Thoft-Christensen (1996) suggests to
model icorr as a Gaussian random variable and gives
deterministic values for the coefficient of variation

1

0

low medium high
Grade of deterioration

20 25 30 35 40

0.5 0.575 0.65 0.725 0.8
C0 [%]

µ(C0)
µ(Dc)

Dc [mm²/a]
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D ( ) D0 0.0232 ( T i) i corr (8)

Pf ( )
x | g(sg , x) 0

f (s, x) dx (9)

Pf ( k)

Pf ( k), µ(Pf ( k)) |

Pf ( k)
x | g(s g, x( k))

f
k
(s, x) dx,

µ(Pf ( k)) sup
Pf( k)

min[µ(s), µ(sg)]

s s s
g

sg

(10)

Figure 3. Fuzzy random process describing the time-dependent decrease of the diameter of a reinforcement steel withD( )
original diameter DO = 20 mm

according to "typical values in normal environ-
ment". However, in most cases the evaluation of
the environmental conditions by experts differs
from one to another, i.e. the coefficient of variation
is uncertain. Here, the corrosion rate is quantified
by a Gaussian fuzzy random variable with the de-
terministic mean value and thei corr 2 µA/cm²
fuzzy standard deviation modeled by the fuzzy
triangular number 0.3; 0.4; 0.5 . The outcome of
the consideration of the fuzzy random variables

und is the fuzzy random processi corr T i D( )
describing the time-dependent reinforcement steel
diameter according to eq. (2)

The fuzzy random process is shown in Fig. 3. More
examples you will find in Möller and Beer (2004)
and Möller et al. (2005a).

3 COMPUTATION OF THE FUZZY FAILURE
PROBABILITY

The fuzzy failure probability according to eq. (1)
can be replaced by

whereby describesg(sg , x ) R ( k) S ( k) 0
the fuzzy failure region and isX f ( k) f

k
( s , x)

the fuzzy joint probability density function accord-
ing to eqn. (3) and (4). For each crisp element s

and sg with the associated memberships sg
values µ(s) and µ(sg) a crisp value Pf( k) of the
time-dependent fuzzy failure probability is obtained.
The membership values µ(Pf(τk)) are computed by
means of the extension principle with µ(s) =

µ( ) and µ(sg) = µ(g(sg, x) = 0). In thef
k
(s, x )

numerical solution the extension principle is
replaced by the -level optimization.

The fuzzy failure probability is thus the fuzzy set
of all values Pf(τk)

In order to determine the time-dependent failure
probability a stochastic fundamental solutionPf ( k)
is required. In principle, any type of probabilistic
algorithm may be applied for this task. In nonlinear
analysis the fuzzy limit state surface g(sg, x) 0
and also each trajectory g(sg, x) = 0 are nonlinear
functions which can only be stated in a non-closed
form. As a consequence, only simulation methods
are suitable stochastic fundamental solutions. The
direct Monte Carlo simulation is extended to yield
the fuzzy Monte Carlo simulation (FMCS) and
coupled with the fuzzy adaptive importance
sampling method (FAIS) in order to improve
efficiency.

3.1 Fuzzy Monte Carlo simulation (FMCS)

Fuzzy Monte Carlo simulation (FMCS) is based on
α-level optimization and the direct Monte Carlo
simulation. The allocation of realizations xi to the
failure region or survival region is carried out by
evaluating the fuzzy system response usingg(x)
the fuzzy indicator function I( ).g(x)
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I(g(x))
1, µ(g(x)) 0) if g(x) 0
0, µ(g(x)) 0) if g(x) > 0

g(x) g(x)
(11)

Pf ( ) I(g(x)) f
k
(s, x) dx (12)

Pf ( ) E I(g(x)) (13)

P̂ f ( ) 1
N

N

i 1
I (g(x i))

(14)

Pf ( ) I(g(x))
f

k
(s, x)

h(x)
h(x) dx (15)

Pf ( ) E I(g(x))
f

k
(s, x)

h(x)
(16)

P̂ f ( ) 1
N

N

i 1
I (g(x i))

f
k
(s , x i)

h(x i)
(17)

The integral over the fuzzy failure region
(eq. (9)) can be replaced by an integralg(sg , x ) 0

over the entire space of the basic variables using
I( .g(x))

Eq. (12) may be interpreted as the fuzzy expected
value of the indicator function I(g(x))

Under the precondition that N realizations xi

(simulated statistical tests) corresponding to the
fuzzy joint probability density function are
generated, an unbiased estimated value is obtained
as follows

The fuzzy Monte Carlo simulation requires a very
large amount of computational effort computing a
small fuzzy failure probability especially in con-P̂
nection with a nonlinear structural analysis far
beyond what is realizable. It is therefore necessary
to increase the efficiency of the simulation. The
importance sampling method, the directional
sampling method, the new method of line sampling
(see Schuëller et al. (2003)), and combinations of
these methods are reported in the literature (e.g.
Schuëller (1997)). By way of example the extension
of importance sampling to take account of
fuzziness is demonstrated in the following.

3.2 Fuzzy adaptive importance sampling (FAIS)

Applying the importance sampling method that
takes fuzziness into account the realizations are
concentrated in the neighborhood of the most pro-
bable fuzzy failure point (fuzzy design point), as
this region yields the largest contribution to the
fuzzy failure probability. For this purpose the fuzzy
probability integral of eq. (9) is extended by inclu-
ding a so-called importance density function h(x).

The fuzzy failure probability according to eq. (15)

corresponds to the fuzzy expected value with
regard to the function h(x).

By simulating realizations xi in accordance with the
importance density function h(x) the fuzzy failure
probability may be estimated using the unbiased
estimator

3.3 Numerical solution

The key of the numerical solution, i.e. the
computation of the fuzzy failure probability, is the
consequently used fuzzy bunch parameter
representation of the fuzzy probability distribution
functions and the fuzzy limit state according to eqs.
(3) and (4). Following time discretization the fuzzy
random variables that must be taken into consider-
ation in the determination of are specifiedPf ( k)
together with the associated fuzzy probability
density functions . The fuzzy bunch para-f

k
( s , x)

meters of the fuzzy probabilitysj | j 1, ..., rk
density functions and of the fuzzysg j | j 1, ..., rg
limit state function are known. Theg(sg , x ( k)) 0
α-discretization is applied to the rs = rk + rg fuzzy
bunch parameters. This leads to the α-level sets

. Cartesian combination of the α-S1, k, ..., Srs , k

level sets results in an rs-dimensionalS1, k, ..., Srs , k

crisp subspace for each αk.S
k

Each element s yields a crisp failureS
k

probability, i.e. a stochastic fundamental solution.
The crisp failure probability is computed in two
steps. The aim of the first step is the determination
of at least one point xi (starting points) in the failure
region. In a second step the importance density
function is constructed and adaptively improved.

Points xi in the failure region (first step) may be
determined by means of a direct Monte Carlo simu-
lation. The incremental processing of complex
loading processes yields the loading level at which
the structure exceeds the limit state between
survival and failure. The loading level is computed
under consideration of physical nonlinearities by
means of an FE-model, see e.g. Möller et al 2005c.
The limit state of serviceability is met when an
arbitrarily prescribed restriction (e.g. for displace-
ments, stresses, strains) is exceeded at any point of
the structure during incremental proceeding of the
loading process. The limit state of load-bearing
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h(x)
k

j 1

(j)
X

(j)(x) (18)

(j) ft (x
(j))

k

r 1
ft (x

(r))
1

(19)

P̂f1

1
N1

N1

i 1

I g(s, x
1,i

) ft (s, x
1,i

)

h1 (x
1,i

)
(20)

P̂fn

1
Nges

n

u 1

Nu

i 1

I g(s, x
u,i

) ft (s, x
u,i

)
n

j 1

Nj

Nges

hj (xu,i
)

with Nges

n

u 1
Nu

(21)

P̂fn 1
P̂fn 1

< P̂fn
< P̂fn 1

P̂fn 1
(22)

capacity is attained when an equilibrium state
between external and internal forces cannot be
found. The structure then exhibits global system
failure. The reached ultimate load is compared with
the load parameters xk,i specified by the Monte
Carlo simulation. If the ultimate load is larger than
the prescribed load parameters, the point in
question lies in the survival region xi Xs. If the
ultimate load is smaller or equal to the prescribed
load parameters, system failure occurs xi Xf.

An alternative numerical solution for the
determination of starting points is introduced in
Möller et al. (2005a).

In the second step the multi-modal density func-
tion h(x) is constructed and adaptively improved.
For the computed starting point xi the correspon-
ding values of the underlying probability density
function are determined. Theft ( s, x) ft ( s , x )
point xi with the largest density value is denoted by
x(1). The point x(1) is surrounded by a hypercuboid.
Multiples of the standard deviations of the associ-
ated boundary distributions hereby form the com-
ponent-based dimensions of the hypercuboid. A
side length of is recommended, whereby2 0.9 n

is the standard deviation of the basic variablesn
Xn. In the case that the first step yields more then
one starting point each of the points is neglected
which is situated within the hypercuboid. For all
remaining points without the hypercuboid the
procedure is repeated and yields the representative
points x(2) to x(k).

The importance sampling density function h(x) is
constructed on the basis of the representative
points x(1) to x(k)

In eq. (18), X
(j)(x) represents the probability

density function of the normal distribution with the
expected value at the point x(j), j = 1, ..., k and the
standard deviation of the basic variables Xn. Then
choice of the importance sampling density function
h(x) permits a determination of the density value of
h(x) in a closed form.

Each probability density function X
(j)(x) of the

multi-modal importance sampling density function
h1(x) is weighted according to the value of the
underlying probability distribution function ft(x

(j)) at
the point x(j).

The weighting factor ω(j) guarantees a higher

concentration of sample points xi to be generated in
the governing regions for the failure probability.

The failure probability after the first iteration
step is determined according to eq. (20) by
simulating N1 sample points x1,i with i = 1, 2, ..., N1

in accordance with the importance sampling density
function h(x) given by eq. (18).

I(g(x1,i)) is hereby the indicator function according
to eq. (11) for point x1,i.

The simulated sample points x1,i in the failure
region serve as new starting points for the second
iteration step. Based on the newly-determined
representative points x(1) to x(k) the modified
importance sampling density function h2(x) is
formulated in accordance with eq. (18) and new
sample points x2,i are simulated according to h2(x).
Owing to the generation of samples according to
the adaptive optimized importance sampling density
functions hj(x) the influence of representative points
of lesser importance with regard to the failure
probability is minimized.

The failure probability after the n-th iterationP̂fn
step is determined according to eq. (21). The Nu

sample points xu,i generated in each iteration step u
are taken into consideration.

The iteration is terminated once the convergence
criterion is satisfied in five consecutive iteration
steps.

The tolerance value ε must be specified a-priori,
e.g. ε = 0.01.

4 EXAMPLE

The time-dependent change of the fuzzy failure
probability is demonstrated by the numerical
investigation of an uniaxial RC-plate with span of
4.0 m. Three fuzzy random input parameters and
additional deterministic input parameters are
considered within the analysis.

1714 © 2005 Millpress, Rotterdam, ISBN 90 5966 040 4



E1( 1, 2, ) X ( ) (23)

E2( 1, 2, ) fcm,cyl ( 1, 2) (24)

Figure 4. Fuzzy random loading process

The structural system is loaded by the loading
prozess of Fig. 4 consisting of the dead load g, the
uncertain distributed load, and the concentrated
load Q. The distributed load is described by the
fuzzy random function

Due to the perfect correlation the fuzzy random
variable is independent of the space coordinatesX

1 and 2. is modeled by logarithmic normalX
distribution (expected value E[ ] = 5 kN/m2,X
fuzzy standard deviation = VAR[ ] = ,X X s1 s1
= 0.75; 0.8; 0.85 kN/m2 as fuzzy bunch
parameter). Because of the independence of the
expected value and the standard deviation of t the
fuzzy random function according eq.E1( 1, 2, )
(23) is stationary in wide sense.
The tensile and compressive strength of concrete

, are additional fuzzy random inputfctm fcm,cyl
parameters. The correlated, Gaussian fuzzy random
function

is introduced in order to describe the fluctuations
of the concrete compressive strength in the space
(expected value E[ ] = 20 N/mm2, fuzzyfcm,cyl
standard deviation = VAR[ ] = , =f fcm,cyl s2 s2
1.9; 2.0; 2.1 N/mm2 as second fuzzy bunch

parameter). Moreover, perfect correlation exists
between and due to the usedfctm fcm,cyl
endochronic material law. Structural damage is also
considered within the endochronic material law.
Tensile cracks in concrete are accounted for in
each element on a layer-to-layer basis according to

the concept of smeared fixed cracks.
The RC-plate was strengthened after a time

period of 30 years. In the deterministic computation
model based on the multi-reference plane model
(see Möller et al. (2005c)) the layers of the old
structure (reference plane 1) and the layers of the
textile reinforced finegrade concrete (reference
plane 2) are kinematically connected with the aid of
an interface of thickness zero, see Fig. 5.

Figure 5. Multi-reference plane model

The time-dependent fuzzy failure probability (τ)Pf
is computed using the FAIS algorithm under
consideration of the governing nonlinearities of
reinforced concrete.
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Figure 6. Time-dependent fuzzy safety level specified by the fuzzy function (τ)Pf

The fuzzy function (τ) of the unstrengthened andPf
the textile strengthened RC-plate is shown in Fig. 6.

The required time point of strengthening follows
by comparing the fuzzy failure probability of thePf
unstrengthened RC-plate with the permissible
failure probability, e.g. for the ultimate limit state
perm_Pf = 7.328 10-5. These permissible failure
probability is equivalent to the reliability index =
3.8.
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