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ABSTRACT: The system behavior may only be realistically assessed provided all input data are appropriately
described and a realistic computational model is implemented. In the paper a new concept of modeling is
presented, based on the theory of fuzzy random functions. By this means, a super-ordinate uncertainty model
is made available which includes the models developed so far, based on real random values and fuzzy values
as special cases. For the analysis of a structure with the aid of a crisp (or uncertain) algorithm and with fuzzy
random functions (or random functions) as input values as well as fuzzy values as model parameters, a fuzzy
probabilistic structural analysis is introduced.

1 INTRODUCTION

The realistic analysis of structures requires reliable
(input) data as well as suitably-matched comput-
ational models; as a rule the data and the model con-
tain uncertainty. In contrast to deterministic struc-
tural analysis, fuzzy probabilistic structural analysis
takes account of this data and model uncertainty.

The geometrical, material and loading data
required for structural analysis are more or less
characterized by uncertainty. It is necessary to ap-
propriately take this uncertainty into consideration. 

If an event (regarding its occurrence), as a
random result of a test, may be observed as a crisp
value on an almost unlimited number of occasions
under constant boundary conditions, this concerns a
stochastic uncertainty. The uncertainty characteristic
randomness is assigned to this stochastic uncer-
tainty. If the boundary conditions are (apparently)
subject to arbitrary fluctuations, a comprehensive
system overview is lacking, the number of obser-
vations are only available to a limited extend, or the
sample elements are of doubtful accuracy (non-
precise), an information deficit exists. The outcome
of this is a gap between the mathematical quality re-
quirements of data if using stochastic methods and
the real available non-precise data. The data do not
satisfy real-valued probability laws. In fact the data
may be quantified by imprecise probability (see e.g.
Viertl 1996). 

The impreciseness results from informal

uncertainty in terms of non-precise recognition of
data or statistical inference (determining stochastic
input parameters, such as expected values, variances
and probability distribution functions). Here, this
informal uncertainty is described by the uncertainty
characteristic fuzziness and mathematically
quantified on the basis of the fuzzy set theory. The
uncertainty consisting of randomness and fuzziness
is summarized in the characteristic fuzzy ran-
domness. The fuzzy random data are assessed with
the aid of the uncertain measure fuzzy probability. 

The uncertainty characteristic fuzzy randomness
includes both randomness and fuzziness as special
cases. If data only show random properties, fuzz-
iness is quantified by zero, i.e. a real-valued random
variable is used. Non-precise data without random
properties are quantified by fuzzy values. Fuzzy
randomness is a generalized uncertainty model
because it permits to consider randomness and
fuzziness simultaneously.

Data can also be assessed with the aid of the
uncertain measure interval probability (Sarveswaran,
Smith & Blockley 1998), which may be interpreted
as a special case of fuzzy probability. The impre-
ciseness is quantified with non-assessed intervals.
This intervals are special fuzzy values, whose
membership functions can only become zero and
unity.

Uncertain data (e.g. for material parameters, load-
ing or boundary conditions) may be characterized by
fuzzy random fluctuations, which depend on
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external conditions. External conditions include, for
example, time τ, the spatial coordinates θ = {θ1, θ2,
θ3},  air pressure or temperature, which are lumped
together in the parameter vector  t = {τ, θ, ...}. If this
relationship can be formulated in terms of a fuzzy
random function, one fuzzy random value is u-
niquely assigned to each realization of the parameter
vector t.

In order to take account of fuzzy random func-
tions including the discussed special cases the fuzzy
probabilistic structural analysis is developed. This
comprehensive analysis concept is formulated as a
further development of introduced probabilistic and
fuzzy probabilistic approaches. 

2 FUZZY RANDOM FUNCTIONS

The underlying mathematical approach of this work
is founded on the definitions of fuzzy random
variables assembled in Möller, Beer, Graf & Sickert
2001b that are based on Kwakernaak 1978. The
definition of fuzzy random functions for n-dimen-
sional parameter vectors t is an enhancement of the
work of Guangyuan Wang & Yue Zhang 1992 con-
cerning one-dimensional t.

The probabiliy space [Ω, S, P] is extended by the
dimension of fuzziness on the basis of the
KOLMOGOROW‘s axiomatic probability concept;
the uncertain measure probability remains defined
over the n-dimensional EUCLIDian space �n .

Thereby Ω designates the space of the elementary
events and S denote a σ-algebra in �n. T M �m

designates the m-dimensional space of the parame-
ters t M T. It establishes the fundamental set of
values that are possible realizations of the fuzzy ran-
dom function.

 A fuzzy random function (t) is then the fuzzyXJ
result of the mapping  T×Ω onto F(�n), whereby
F(�n) denotes the set of all fuzzy values in �n. It is a
family of fuzzy random variables  for fixed t = tkXJ
in the extended probability space  [Ω, S, P] ex-
plained above.

(t) ={ (tk, ω), t M T, ω M Ω, k = 1, 2, 3, ...}       (1)XJ XJ

An n-dimensional fuzzy function, whose function
values are fuzzy values (see Möller, Beer, Graf &
Sickert 2001a), is assigned to each (crisp) elemen-
tary event (ω, t) of the fuzzy random function. Thus
the fuzzy function is a realization of the fuzzy ran-
dom function. In Fig. 1 three realizations of an one-
dimensional fuzzy random function are displayed
exemplarily.   

If the realization x(t) of a real random function
X(t) as well as the fuzzy realization x̃(t) of a fuzzy
random function (t) may be assigned to anXJ
elementary event ω, and if x(t) M x̃(t) º t M T holds,
this means that x(t) is contained in x̃(t). If for all

elementary events ω M Ω the x(t) are contained in the
x̃(t), the  x(t) then constitute an original function X(t)
of the fuzzy random function (t). Each real ran-XJ
dom function X(t) without fuzziness that is com-
pletely contained in (t) is thus an original functionXJ
of the fuzzy random function (t). Provided that allXJ
original functions are known, a fuzzy random
function is the fuzzy set of its original functions
contained in (t). Realizations of the real randomXJ
functions (original function) are reffered to as
trajectories (crisp exemplar function).

Figure 1. Realizations of a one-dimensional fuzzy random
function 

Each fuzzy random function (t) contains atXJ
least one real random function X(t) as an original
function of (t). Thus each fuzzy random functionXJ

(t) that possesses precisely one original is an realXJ
random function X(t). The description of fuzzy ran-
dom functions by means of their original functions
ensures that real random functions are contained in
fuzzy random function as a special case.

With the aid of α-discretization a fuzzy random
function may be formulated as a set of α-level sets of
real random functions (original functions)

For a fuzzy random function that is solely dependent
on spatial coordinates θ the term fuzzy random field
is adopted. In the case of time-dependency, the term
fuzzy random process is adopted.

The properties of fuzzy random functions regard-
ing their randomness may be derived from the theory
of random functions. A fuzzy random function is e.g.
strictly stationary, if the moments of all orders of the
fuzzy probability distribution function are invariant
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Figure 2. Fuzzy correlation functions
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relative to a displacement in the vector t.
For the fuzzy random function, fuzzy probability

distribution functions  may be generated as aFt
J (x)

fuzzy set of the probability distribution functions
Ft(x) of the original functions with the membership
values µ(Ft(x)). The quantification of fuzziness by
fuzzy parameters leads to the description of the
fuzzy probability distribution function  of  asFt

J (x) XJ
a function of the fuzzy bunch parameter vector .sJ

Special bunch parameters are e.g. the fuzzy mean
value of a fuzzy random field characterized by a
constant mean value

or the parameters of the fuzzy probability
distribution function of an homogeneous isotropic
fuzzy random field that is GUMBEL distributed

The uncertain proportion of normal distribution
(ND) and logarithmic normal distribution (LND) of
a mixed probability distribution function may also be
quantified by a fuzzy bunch parameter.

In the special case of homogeneous isotropic
fuzzy random fields the linear dependency of the
fuzzy random variables may be described using
fuzzy correlation functions. Fuzzy correlation func-
tions X(L) are mostly fuzzy functions selected with-kJ

out experimental verification for the mathematical
quantification of the fuzzy correlation (L). AnRXX

J

exponential and a linear shape function are shown in
Fig. 2.

3 FUZZY PROBABILISTIC STRUCTURAL
ANALYSIS

The aim of  fuzzy probabilistic structural analysis is
to map fuzzy random input data  onto fuzzyXJ
random structural responses  (e.g. displacements,ZJ
internal forces, strains or stresses). 

One component of the mapping operator is a
deterministic linear or nonlinear, static or dynamic
structural analysis, which is referred to as
deterministic fundamental solution. The special
combination of the uncertainty model "fuzzy
randomness" with a deterministic algorithm based on
the Finite Element Method (FEM) leads to Fuzzy

Stochastic Finite Element Method (FSFEM).
The abstract procedure of the fuzzy probabilistic

structural analysis is shown in Fig. 4. Fuzzy random
input parameters are quantified by fuzzy random
functions. Depending on the kind of parameter
vector t influencing the fuzzy random fluctuations
the special cases of fuzzy random functions may be
derived, e.g. fuzzy random variables (independent of
t), fuzzy random fields (only depending on the
position vector θ = t) or fuzzy random processes
(only depending on the time τ = t). All further
uncertain parameters are put in as deterministic
values or fuzzy values.

The fuzziness of the fuzzy random functions (t)XJ
is described by way of fuzzy bunch parameters .sJ
With the aid of α-discretization the fuzzy bunch
parameters  are discretized by crisp α-level setssJ
(intervals) of each predetermined membership level
α. 

The mapping operator of the fuzzy probabilistic
structural analysis consists of a three-part analysis
algorithm (Fig. 3) and includes fuzzy analysis,
probabilistic structural analysis and deterministic
structural analysis (deterministic fundamental
solution). 

The aim of fuzzy analysis (outer loop) is to map
fuzzy input values (bunch parameters and input
parameters) onto result values with the aid of an
analysis algorithm. The results  are also fuzzyzj

J

values. They may be computed from the fuzzy input
values by means of the extension principle in
combination with the Cartesian product between
uncertain sets (see e.g. Zadeh 1965 or Beer 2002).
However, the extension principle is hardly
practicable in the case of complex mapping
operators, as its application requires discretization of
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the support of the fuzzy input sets - e.g. using a point
mesh. This leads to numerical problems. Alternative
procedures which exploit the special properties of
the mapping operator or additional information
concerning the mapping are suggested e.g. in
Bonarini & Bontempi 1994. Here the α-level
optimization according to Möller, Graf & Beer 2000
is applied which permits the use of mapping
operators without special properties.

Figure 3. Three-part analysis algorithm of fuzzy probabilistic
structural analysis 

All fuzzy input values are discretized using the
same number of  α-levels  αk, k = 1, ..., r (Fig. 4 ì).
For each fuzzy input value   =  on the level  αksi

J AJi
the α-level set  is then assigned to , and allAi,αk si

J

 form the crisp subspace  (Fig. 4 í). WithAi,αk Sαk
the aid of the mapping operator z = f(s1; ... ; sn) it is
possible to compute elements of the α-level sets Bj,αk

of the fuzzy bunch parameters z̃j = , j = 1, ..., m ofBJj
the result values (t) on the α-level αk (Fig. 4 ò).ZJ
The mapping of all elements of  yields the crispSαk
subspace  of the z-space.Zαk

Once the largest element  and the smallestzj,αkr
element  of the α-level set  have beenzj,αk l Bj,αk

found, two points of the membership function
 are known (Fig. 4 ò). In the case ofµ(zj)�µBj(zj)

convex fuzzy result values the µ(zj) are thus com-
pletely described. The determination of   andzj,αkr

 replaces the max-min operator of the extensionzj,αk l
principle. The search for the smallest and largest
elements may be formulated as an optimization
problem. The objective functions

must be satisfied. The requirements (s1; ...; sn) M Sαk
represent the restrictions of the optimization
problem.

Eqns. (8) and (9) are satisfied by the optimum
points  sopt. For each fuzzy result value precisely two
optimum points in the crisp subspace  belong toSαk
each α-level αk. The optimization task according to

Eqns. (8) and (9) for all α-levels  αk  and all fuzzy
bunch parameters z̃j of the result values (t) isZJ
referred to as α-level optimization.. In order to solve
the α-level optimization problem special properties
of the mapping operator z = f(s1; ... ; sn) may be
exploited; these include uniqueness, biuniqueness,
continuity, monotonicity and dimensionality of the s-
space and  z-space.

If the mapping operator possesses no special
properties, the optimum points sopt are located
arbitrarily in ; otherwise the search for the soptSαk
may be limited to parts of  - e.g. on theSαk
"boundary". If 
 a) every crisp subspace  is coherent andSαk
b) the mapping operator is continuous and unique,
the fuzzy values z̃j are then convex uncertain sets. If
no interaction exists between the fuzzy input values

 condition a) is satisfied when all  =  aresi
J AJi si

J

convex uncertain sets. If condition b) is not
complied with, the α-level optimization yields
envelope curves of the actual membership functions
of the z̃j. The applied optimization strategy is
explained in Möller, Graf & Beer 2000.

Each element of the fuzzy set  determines onesJ
original function (real random function) of every
fuzzy random function and one original
(deterministic function) of the fuzzy correlation
function (Fig. 4 î). These original functions are
mapped onto original functions Z(t) of the fuzzy
random result values (t) by means of an efficientZr

J

probabilistic analysis algorithm (middle loop in Fig.
3 and Fig. 4 ï). The deterministic (nonlinear) static
or dynamic structural analysis is performed in the
inner loop (Fig. 3 and Fig. 4 ð).

Monte Carlo simulation is an efficient
probabilistic analysis algorithm (see e.g. Schuëller
2001). It represents a suitable universal tool when
applying complex nonlinear models in deterministic
structural analysis. Both the spectral representation
of the real random functions for random fields and
the special methods for the analysis of MARKOV
chains for random processes may be applied. 
The result of one Monte Carlo simulation is a
sample according to one original function Z(t) of the
fuzzy random structural response (t) on theZr

J

membership level µ(Z(t)) = αk (Fig. 4 ñ). The
assigned elements  of the fuzzy bunchzj,αk
parameters  (e.g. fuzzy mean value, fuzzy variancezj

J

or fuzzy quantils) of the fuzzy random result values
 may be obtained by statistical evaluation of theZr

J

sample. The assigned fuzzy probability distribution
function may be determined directly from empirical
distribution function or approximated applying the
methods of statistical inference and test theory.
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Figure 4. Scheme of the fuzzy probabilistic structural analysis
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The special case, that only fuzzy values sJ � xJ
have to be taken into account as input  parameters of
a structural analysis,  is also implemented in the
algorithm described above. Then the analysis of the
probabilistic algorithms is omitted. Using the α-level
optimization in combination with the deterministic
fundamental solution, the fuzzy result valueszJ
concerning the structural response may be
determined (Fig. 4 ó).

Fuzzy probability distribution functions for  fuzzy
random result values may be approximated on the
basis of the set of fuzzy quantil values. The use of
the computed fuzzy bunch parameters in the
equation of an assumed (tested) probability distribu-
tion is also possible.

4 EXAMPLE

The fuzzy probabilistic structural analysis approach
is demonstrated by way of an example. The uniaxial
plate (Fig. 5) is analyzed under consideration of the
governing nonlinearities of reinforced concrete. The
physical nonlinear deterministic fundamental
solution is represented by the FE program FALT-
FEM for the calculation of folded plates on the basis
of mixed hybrid finite elements with assumed stress
distribution (see Möller, Graf & Kluger 1997).
Endochronic material laws are applied to concrete
and reinforcement steel. Tensile cracks in the
concrete are accounted for in each element on a
layer-to-layer basis according to the concept of
smeared fixed cracks. Uncertain input parameters are
both the time-dependent fuzzy random fluctuations
of the distributed load and the fuzzy random
fluctuating conrete compressive strength in the
whole plate. Each finite element consists of 12
concrete layers (of 1mm thickness each) and two
uniaxial smeared reinforcement layers. The loading
process (Fig. 6) consists of the dead weight, a fuzzy
random distributed load and a nodal load P = 1 kN in
the center of the plate.

Investigation 1

The investigation aimes on the determination of the
fuzzy random crack state under the service load.

The distributed load  ]ν(τ) is modeled by apJ
fuzzy random process. The factor  is considered topJ
be a discrete GUMBEL distributed fuzzy random
variable with a fuzzy expected value [p] (Fig. 6)EJ
and a standard deviation σp = 0.1 kN/m². 

Figure 5. Geometry, FE model

The concrete compressive strength is modeled by a
perfectly correlated GAUSS normal distributed
random field with the expected value E[β] = 20
N/mm² and a coefficient of variation v = 0.10. The
concrete tensile strength is calculated from the
compressive strength with an endochronic concrete
material law and under consideration of the strain
velocity. Therefore it is a random variable as well.
Because of the perfect correlation the introduction of
a random variable that mirrors the random
fluctuations of all elements at once is sufficient.

The probabilistic structural analysis is carried out
by Monte-Carlo simulation. A sample consisting of
100 sample elements is calculated from each element
of the fuzzy expected value [p] (fuzzy bunchEJ
parameters). A trajectory of the loading process and
a realization of the concrete compressive strength are
determined for each sample element. The load is
increased incrementally up to τ = 2000 d and the
crack state is iteratively computed in every
increment.



Figure 6. Fuzzy random load process, fuzzy random crack state

The empirical fuzzy random distribution
functions (cr) for the points in time when the firstFJ
cracks occur are shown in Fig. 6. The lower three
layers were cracked in one direction for each
simulated realization. The first cracks in layer 1
occured predominately when applying the point-
load. Layer 4 remained uncracked for some realiza-
tions. In consequence of the multiplicative  connec-
tion of ν(τ) and  the uncertainty of the loadingpJ
process as well as the uncertainty of the crack state
increase with time. This can be concluded from the
growing distance between the empirical fuzzy ran-
dom distribution functions of the decisive original
functions for α = 0. A probabilistic analysis, which
does not consider the fuzziness of the expected value

[p], yields only one empirical distribution functionEJ
for each layer (marked by α = 1 in Fig. 6).
 
Investigation 2

Uncertain input parameters are the fuzzy random
loading process according to Fig. 6 and the concrete
compressive strength, as well. Now the latter is
modeled by a partially correlated fuzzy random field
in extension of investigation 1. The field is
discretized with fuzzy random variables in the
centroids of the eight finite elements. This
discretization method (midpoint method; Schuëller
2001) is chosen considering the special properties of

the applied nonlinear FE-algorithm. The correlation
of the fuzzy random variables is computed by
evaluating the correlation function in Fig. 2b with a
fuzzy correlation length  = <2, 4, 10>[m] (fuzzyLx

J

triangular number). Additionally, the position  of the
reinforcement in the tensile zone is modeled by a
fuzzy variable, i.e. without randomness. Thus the
space of the fuzzy bunch parameters possesses three
dimensions.

The fuzzy random displacement  in the platevJ
center θm after τ = 2000 d is chosen as fuzzy random
result value.

 = (θm, τ = 2000 d)       (13)ZJ vJ
 
In Fig. 7 the  fuzzy bunch parameter  (fuzzy meanv�J

value) of  is shown. The fuzzy empiricalvJ
distribution function of v is displayed in Fig. 8.

5 CONCLUSIONS

For the analysis of a structure with the aid of a crisp
(or uncertain) algorithm and with fuzzy random
functions (or random functions) as input values, a
fuzzy probabilistic structural analysis is introduced.
The results  of the fuzzy probabilisticZr

J (t) M ZJ(t)
structural analysis are computed as fuzzy random
functions of the structural responses. 



The fuzzy probabilistic structural analysis permits
the simultaneous consideration of different types of
uncertainty: randomness, fuzzy randomness and
fuzziness.

Figure 7. Fuzzy mean value of the fuzzy random displacement 

Figure 8. Fuzzy empirical distribution function of the fuzzy
random displacement 
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