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Abstract� Fourier expansions of elliptic motion functions in multiples of the true�
eccentric� elliptic and mean anomalies are computed numerically by means of the fast
Fourier transform� Both Hansen�like coe�cients and their derivatives with respect
to eccentricity of the orbit are considered� General behavior of the coe�cients and
the e�ciency �compactness� of the expansions are investigated for various values of
eccentricity of the orbit�
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�� Introduction

When constructing analytical and semi�analytical theories of motion of
arti�cial Earth satellites and other celestial bodies we face the problem
to expand some functions of coordinates into trigonometric series with
the coe�cients depending on the eccentricity of the orbit� Numerical
e�ciency of such series and� therefore� the quality of the resulting the�
ory of motion depends substantially not only on the eccentricity of the
orbit but also on the angular variable in multiples of which the expan�
sions are constructed� True� eccentric or mean anomalies are usually
used as the trigonometric argument of these expansions� A few years
ago it was suggested to use trigonometric expansions in multiples of
a new independent variable called elliptic anomaly �Brumberg� �		
�
Brumberg and Fukushima� �		�
� Preliminary studies showed �Brum�
berg and Fukushima� �		�
 that the series in multiples of the elliptic
anomaly in many cases converge faster than the series in multiples of
any classical anomaly� It allows one to use the elliptic anomaly very e��
ciently for constructing theories of motion of celestial bodies �see� for
example� Vasiliev� Vakhidov and Sokolsky� �		�� Vakhidov and Vasiliev�
�		�
� On the other hand� no su�ciently detailed study of the question�
which anomaly is more e�ective for computing various kinds of pertur�
bations in motion of celestial bodies for di�erent values of eccentricity�
has been yet performed�
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In this paper we propose an e�ective algorithm of numerical com�
putation of Hansen�like coe�cients corresponding to various anomalies
as well as the derivatives of these coe�cients with respect to the eccen�
tricity� The algorithm is based on the fast Fourier transform �FFT

and enables us to compute at once all the Fourier coe�cients of a given
function� absolute value of which is higher than a given limit� The anal�
ogous ideas to use the fast Fourier transform to compute numerically
the special functions appearing in celestial mechanics have been pro�
posed� e�g�� by Goad ��	��
� However� our algorithm has the advantage
of keeping track automatically of all kinds of errors of computations�
Making use of our algorithm we investigate numerically how fast the
coe�cients of trigonometric series in multiples of di�erent anomalies
decrease for various values of the eccentricity� In particular� one of
the important problems for practice is to study numerical e�ciency
of various expansions of the satellite perturbing function both for the
perturbations due to oblateness of the central body and for the per�
turbations from external bodies� An attempt to consider this problem
was done already by Brumberg and Fukushima ��		�
� but� since the
authors considered only a few �rst terms of the expansion� the results
presented in that paper are not detailed enough to provide a de�nitive
answer for practice�

In the present paper we study trigonometric expansions in multiples
of four di�erent anomalies� true� eccentric� mean and elliptic� It is clear
that our approach could be easily used also for computing the expan�
sions in multiples of any other angular variable �e�g�� for the anomalies
introduced in �Bond and Janin� �	��� Ferrandiz et al�� �	��

�

Let us stress that the aim of our research is not to obtain analyti�
cal estimations connected with the convergence of trigonometric series
under consideration� but to study the qualitative behavior of the Fouri�
er coe�cients of elliptic motion functions on the basis of numerical
experiments�

�� Hansen�like Coe�cients and Their Computation

We consider the following expansion�
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where r� v are the radius�vector and the true anomaly� respectively�
de�ning the position of a body on an elliptic orbit� a is the semi�major
axis of the orbit� n� m are integers� x corresponds to one of the above

mentioned anomalies�
�

� is the imaginary unit� The coe�cients Xn�m
s
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depend on the eccentricity e of the orbit� Expansion ��
 is widely used
in practical celestial mechanics �for example� for constructing analyt�
ical and semi�analytical theories of satellite motion
� The aim of our
research is to study the behavior of the coe�cients Xn�m

s for various
anomalies and various values of the eccentricity�

In order to compute Xn�m
s we use a special approach based on the

fast Fourier transform� This approach is very convenient to solve our
problem from several points of view� First� numerical Fourier analy�
sis with the FFT is very e�cient for computing Fourier expansion of
a function which can be computed numerically� In celestial mechanics
such an approach has been used� for example� in �Chapront and Simon�
�		�� Brumberg and Klioner� �		�� Klioner� �		�
 and has shown its
high e�ciency� Second� the technique based on the fast Fourier trans�
form may be easily applied to any anomaly x� in multiples of which the
expansion of coordinates is constructed� Third� this approach can be
identically applied for any values of the eccentricity e � ��� �� includ�
ing those very close to �� Moreover� we obtain simultaneously all the
coe�cients Xn�m

s for �xed n and m from a given interval of values for
the index s and�or all the coe�cients Xn�m

s � magnitudes of which are
larger than a given limit�

For all anomalies we use the following computational scheme for the
coe�cients Xn�m

s �e
�

�� For a �xed value of the eccentricity e we compute the values of
the true anomaly v for 
N values of x distributed uniformly in the
interval ��� 
��� xi � 
��
N � �i� �
� i � �� 
� � � � � 
N � At this step
of the algorithm we solve �numerically
 the equation v � v �x
�


� For all 
N values of v and for the given n and m we evaluate the
left�hand side of ��
�

�� By means of the fast Fourier transform we compute the numerical
values of the coe�cients �Xn�m

s satisfying in each from 
N points
x � xi the following relation
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The coe�cients �Xn�m
s di�er from the true values of the Fourier coef�

�cients Xn�m
s because of errors of aliasing �see� e�g�� Press et al�� �		



and numerical round�o� errors� The latter source of errors can be tack�
led by using the fact that Xn�m

s are real functions of the eccentricity�
Therefore evaluating the Fourier coe�cients in complex form �i�e�� by
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a standard complex FFT procedure
 we can use the imaginary parts of
the obtained coe�cients to estimate the numerical round�o� errors of
computations� In particular� we �nd the maximal �in absolute value

imaginary part � among all the coe�cients computed by means of the
FFT and retain only those coe�cients� the real part of which is suf�
�ciently larger than �� As additional test of the algorithm� we make
the inverse fast Fourier transform with the retained coe�cients and �nd
the di�erence between the initial and restored functions� This di�erence
allows us to check the overall accuracy of our computations� In order
to make errors of aliasing negligible we always check that the coe��
cients retained after accounting for the numerical round�o� errors are
su�ciently far from the boundaries of the interval s � ���
N��� 
N����
If it is not the case we increase the value of N by � and repeat the
computations�

For each kind of computations �including those of the derivatives
of the Hansen�like coe�cients described in Section � below
 we check
that our results coincide with the results computed by means of other
known methods within expected numerical errors� It is su�cient to
check this for a low value of the eccentricity� For a larger value �for
example� e � ��	
 the use of other methods becomes very di�cult or
even impossible�

Let us brie�y discuss how to solve the equation v � v �x
 for each
anomaly�


��� True Anomaly

In this case we do not need to solve the equation v � v �x
� We can
simply tabulate the left�hand side of the equation
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in the points distributed uniformly with respect to v�


�
� Eccentric Anomaly

In order to compute the coe�cients of the expansions in multiples of
the eccentric anomaly g
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we evaluate the left�hand side of ��
 in the points distributed uniformly
with respect to g� The values of the true anomaly are calculated in these
points by means of the well�known relation

tan
v



�

s
� � e

�� e
tan

g



� ��



��� Mean Anomaly

For the expansions in multiples of the mean anomaly l�
r
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we need to compute the values of the true anomaly in the points dis�
tributed uniformly with respect to l� To this end we have to solve in
these points the Kepler equation

l � g � e sin g ��


enabling one to �nd the numerical values of the eccentric anomaly g
and by using ��
 the corresponding values of the true anomaly v�

In case of highly eccentric orbits it is not e�cient to solve ��
 by
means of the classical iteration method or the method of Newton iter�
ations because of slow convergence of the iteration process� It is more
reasonable to use in that case special methods of solving the Kepler
equation �see� for example� Danby and Burkardt� �	��
�


��� Elliptic Anomaly

According to �Brumberg� �		

 the elliptic anomaly w is de�ned as

w �
�
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where F is the elliptic integral of the �rst kind� K is the complete
elliptic integral of the �rst kind� In order to compute the coe�cients of
the expansion in multiples of the elliptic anomaly�
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we have to evaluate the true anomaly in the points distributed uni�
formly with respect to w� It can be done using the inverse of ��
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and computingK and the elliptic amplitude am�x� e
 numerically� Alter�
natively one can use the Fourier expansion of ���
 �Brumberg� �		



g � w � 

�X
s��

���
s
s

qs

� � q�s
sin 
sw� ���


where q is the nome

q � exp

	

��K

�p
�� e�

�
K �e


�
A � ��



This expansion is known to converge quite rapidly even for large eccen�
tricities due to relatively small value of q� Eq� ��
 is again used to
compute the corresponding values of v�


��� Numerical Results

We designed a package of computer programs in Maple �Char et al��
�		�
 which allows one to evaluate the coe�cients of expansions ��
�
��
� ��
 and �	
 for any given values of the indices n and m and any
eccentricity e � ��� ��� Arbitrary�precision arithmetic implemented in
Maple is used herewith� The option to change numerical precision of
computations is quite useful for the investigation of both our numeri�
cal technique and the expansions themselves� Actually we do not use
any speci�c Maple features and it is quite easy to re�write the programs
into any e�ective computer language �e�g�� FORTRAN
 to speed up the
calculations further� For given m� n and e our software computes auto�
matically all the coe�cients which could be reliably computed using
the given precision of arithmetic� The package automatically accounts
for both numerical round�o� errors and errors of aliasing along the
lines described above� A more detailed discussion of the package can
be found in �Vasiliev� Vakhidov and Klioner� �		�� Klioner et al�� �		�
�

We calculated trigonometric expansions ��
� ��
� ��
 and �	
 for sev�
eral dozens pairs of the indices n and m which appear� e�g�� in the
expansions of the satellite perturbing function and for four representa�
tive values of the eccentricity ���� ���� ����� ��	� Principal features of
the behavior of the coe�cients Xn�m

s are described below�


����� Case n � �

The expansions with n � � are used when considering� e�g�� perturba�
tions due to oblateness of the central body� Our numerical experiments
for n � � show that the anomalies can be ordered according to the com�
pactness of the corresponding trigonometric series as follows� true �most
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compact series
� elliptic� eccentric� mean �least compact series
� Indeed�
for n � � expansion ��
 in multiples of the true anomaly reduces to a
�nite polynomial� Moreover� the coe�cients V n�m

s �e
 decrease faster
than the coe�cients of expansions in multiples of other anomalies�
On Figures ��� we see typical cases of the behavior of the coe�cients
V n�m
s �e
� Gn�m

s �e
� Ln�m
s �e
� W n�m

s �e
 of expansions ��
� ��
� ��
 and �	
�
Our calculations show that �
 the faster the series in multiples of

a given anomaly converge� the larger is the maximal coe�cient of the
corresponding series� and the smaller is the value of s for this maximal
coe�cient� 

 the larger the value of m� the larger is the value of s
for the maximal coe�cient of the corresponding expansion� For m��
all four maximums correspond to s � � and the coe�cients decrease
symmetrically with respect to s � � in accordance to the D�Alembert
rule

Xn�m
s � Xn��m

�s � ���


Let us note also an interesting phenomenon in the behavior of the
Hansen coe�cients Ln�m

s � For n� jmj � �� certain  pulsations of the
magnitude of the Hansen coe�cients can be observed �see� Figures ��

�
The  pulsations appear only in the domain of increasing the Hansen
coe�cients from the central minimum �Ln�m

�
�e
 � � for n� jmj � ��
�

The number and the amplitude of the  pulsations increases together
with �n�


���
� Case n � �

The expansions with n � � are used when considering� e�g�� the per�
turbations due to external bodies� For n � � the anomalies can be
ordered according to the compactness of the corresponding expansions
as follows� eccentric� elliptic� true� In this case expansion ��
 in multi�
ples of the eccentric anomaly reduces to a �nite polynomial� Numerical
e�ciency of the expansions in multiples of the mean anomaly depends
crucially on the precision to be acquired� For a low precision the series
in multiples of the mean anomaly converge faster than the other ones�
Because of a very fast decrease of the Hansen coe�cients these series
are sometimes more e�cient than even the series in multiples of the
eccentric anomaly which have a �nite number of terms �see� for exam�
ple� Figure � in the neighborhood of maximum
� For a higher precision
the e�ciency of the series in multiples of the mean anomaly gets worse
rapidly�

Figures ��� show typical behavior of V n�m
s �e
� Gn�m

s �e
� Ln�m
s �e
�

W n�m
s �e
 for n � �� Our experiments show that the series in multiples of

the mean anomaly are more e�cient for larger values of n� The e�ciency
of the series in multiples of the true anomaly decreases with increasing
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of n� The coe�cients W n�m
s �e
 of the series in multiples of the elliptic

anomaly do not decrease monotonically from the central maximum� but
exhibit irregular pulsations of magnitudes �see� for example� Figure �
�

Let us make some notes on the behavior of Hansen coe�cients� The
larger the index m� the more asymmetric is the decrease of the Hansen
coe�cients from the central maximum� This fact is observed visually on
Figure �� On the same Figure � we see that Hansen coe�cients exhibit
again certain  pulsations of magnitude� These  pulsations are larger
and more frequent for larger values of n and m�

For larger eccentricities all the e�ects described above �e�g�� num�
ber and amplitude of the  pulsations for Hansen coe�cients� etc�
 are
ampli�ed� Numerical e�ciency of all the expansions under considera�
tion decreases with increasing the eccentricity� The described advan�
tages and disadvantages of the anomalies for highly eccentric orbits are
also ampli�ed� On the opposite� for smaller eccentricities the di�erences
in the behavior of V n�m

s �e
� Gn�m
s �e
� Ln�m

s �e
� W n�m
s �e
 become smaller

and the numerical e�ciency of all four kinds of expansions is almost
the same�

The results of our investigations are described in more detail in
�Vasiliev� Vakhidov and Klioner� �		�
� This work contains a large
number of �gures presenting the behavior of Fourier coe�cients for
four representative values of the eccentricity� ���� ���� ����� ��	� These
�gures con�rm visually the e�ects described above� The �gures� numer�
ical values of the coe�cients as well as the software enabling one to
compute the expansions are available from the authors upon request�

�� Derivatives of the Hansen�like Coe�cients

Our approach allows one to evaluate not only the coe�cients V n�m
s �e
�

Gn�m
s �e
� Ln�m

s �e
�W n�m
s �e
 but also their derivatives with respect to the

eccentricity� It is very important because when constructing analytical
and semi�analytical theories of motion we need to integrate di�erential
equations �for example� Lagrange equations or canonical equations for
Delaunay variables
 containing in the right�hand sides the derivatives
of the perturbing function with respect to the orbital elements� rather
than the perturbing function itself� We describe below how to solve this
problem in the framework of our approach�
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���� True Anomaly

We consider the left�hand side of ��
 as a function of e and v

Fv �e� v
 �
�
�� e�

�n exp
�
�

� mv
�

�� � e cos v
n
� ���


Di�erentiating this relation with respect to e we get

�Fv
�e
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On the other hand� we see that
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Therefore� the Fourier coe�cients of the function AvFv coincide with
the derivatives dV n�m

s �e
 �de we are looking for� In order to compute
the Fourier expansion of AvFv our approach described in Section 
 can
be applied identically�

The similar way can be used also for computing derivatives of the
coe�cients Gn�m

s �e
� Ln�m
s �e
 and W n�m

s �e
�

��
� Eccentric Anomaly

We consider the left�hand side of ��
 as a function of e and g

Fg �e� g
 �
�
�� e�

�n exp
�
�

� mv�e� g

�

�� � e cos v�e� g

n
� ���


Here v is considered as a function of e and g

cos v �
cos g � e

�� e cos g
� sin v �

p
�� e� sin g

�� e cos g
� ���


Using the equation

�v �e� g


�e
�
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�� e�
� ��	


one gets
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�e
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�� e�

�
�n �cos v � e
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�
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���� Mean Anomaly

The left�hand side of ��
 can considered as a function of e and l

Fl �e� l
 �
�
�� e�

�n exp
�
�

� mv�e� l

�

�� � e cos v�e� l

n
� �
�


where v is considered here as a function of e and l� Taking the derivative
of ��
 one gets

�g �e� l


�e
�

sin vp
�� e�
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�v �e� l


�e
�

sinv

�� e�
�
 � e cos v
 � �
�


and� therefore�

�Fl
�e

�Al Fl �

Al�
�

�� e�

�
�n cos v �� � e cos v
 �

�

� m sin v �
 � e cos v

�
� �
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���� Elliptic Anomaly

The left�hand side of �	
 can be considered as a function of e and w

Fw �e� w
 �
�
�� e�

�n exp
�
�

� mv�e� w

�

�� � e cos v�e� w

n
� �
�


Here v is considered as a function of e and w� Hence we get

�Fw
�e

�Aw Fw �

Aw�n
�
e� e� cos v � cos v

�� � e cos v
 ��� e�
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�
en sin v

� � e cos v
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� m

�
�v �e� w


�e
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In order to compute �v �e� w
 ��e we di�erentiate one of the relations
���
 taking into account that g is considered as a function of e and w
here� The result is

�v �e� w


�e
�

sinv

�� e�
�

� � e cos vp
�� e�

�g �e� w


�e
� �
�


There are many ways to compute �g �e� w
 ��e� We could� for example�
di�erentiate the series ���
 with respect to e �the nome q depends only
on the eccentricity e
� Alternatively we could di�erentiate in closed
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form the de�nition ���
� Here we prefer another way� which avoids both
expansions and the use of the elliptic amplitide am�x� e
� Considering
��
 as an implicit function for g�e� w
 we get

�g �e� w


�e
��

�
�w �e� g


�g

�
�� �w �e� g


�e
�

�w �e� g
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and the derivatives of the elliptic integrals are de�ned as

�F �	� e
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e
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Here E �	� e
 and E �e
 are the incomplete and complete elliptic inte�
grals of the second kind� respectively�

���� Numerical Results

In order to investigate the e�ciency of trigonometric series with the
coe�cients dV n�m

s �e
 �de� dGn�m
s �e
 �de� dLn�m

s �e
 �de� dW n�m
s �e
 �de

we have computed the series numerically for various eccentricities and
for various values of n and m� We used herewith the software described
in Section � generalized in an obvious way to cope with the functions
���
� �
�
� �
�
 and �
�
�

The results can be summarized as follows� For each anomaly the
behavior of derivatives of the Fourier coe�cients is quite similar to the
behavior of the Fourier coe�cients themselves as far as the e�ciency
of the corresponding expansions is concerned� Numerical values of the
derivatives are usually larger than the values of the coe�cients them�
selves� On Figures ���� one can see some examples of typical behavior
of the derivatives� A large number of �gures for the derivatives can be
found in �Vasiliev et al�� �		�
� Additional �gures� numerical values of
the derivatives as well as the corresponding software are available from
the authors upon request�
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���� Higher�Order Derivatives

Computation of the higher�order derivatives of V n�m
s �e
� Gn�m

s �e
� Ln�m
s �e
�

W n�m
s �e
 �which are necessary for constructing of higher�order theories

of motion
 can be realized in essentially the same way as that of the
�rst�order derivatives� Indeed� let us consider the left�hand side of ��

as a function of e and an arbitrary anomaly x

Fx �e� x
 �
�
�� e�

�n exp
�
�

� mv�e� x

�

�� � e cos v�e� x

n
� ��



where v is considered as a function of e and x� Using the approach
described above we obtain quite generally

�Fx
�e

� Ax Fx � ���


One more di�erentiation gives

��Fx
�e�

�

�
�Ax

�e
� �Ax


�

�
Fx � ���


On the other hand�

��Fx
�e�

�
�X

s���

d�Xn�m
s �e


de�
exp

�
�

� sx
�
� ���


Thus� the Fourier series of the right�hand side of ���
 gives us the
second�order derivatives d�Xn�m

s �e
 �de�� In the same way we could
derive the !generating functions for the derivatives of any order� Although
for the higher�order derivatives the expressions are rather complicated�
the derivation can be easily automated with the aid of any computer
algebra system �what we in fact did even for the �rst�order derivatives
�

�� Concluding Remarks

The approach described in the present paper enables one to evaluate by
means of the fast Fourier transform not only the coe�cients considered
in the paper and their derivatives� but also coe�cients of other Fourier
expansions which are used in modern celestial mechanics� In the same
way one can evaluate� for example� the Hansen�like coe�cients corre�
sponding to other anomalies� the coe�cients of the generalized Kepler
equation �see� Brumberg� �		
� Klioner� �		

� the functions F �e
 and
G �e
 introduced in �Brumberg et al�� �		�
� Laplace coe�cients� etc�
The derivatives of the corresponding coe�cients can be computed as
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well� Simultaneous computation of a substantial numbers of harmonics
allows one to judge how e�cient the corresponding expansion is and
how many terms are necessary to attain a required level of accuracy�
In particular� our software enables one to calculate how many terms of
an expansion we have to retain in order to represent the corresponding
function of elliptic motion with a given accuracy� In principle� a similar
FFT�based approach could be applied to investigate actual e�ciency of
various variants of analytical and semi�analytical theories of motion of
arti�cial satellites and other celestial bodies �see� e�g�� Klioner� �		�
�
A detailed study of the latter problem is underway�
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Figure �� The behavior of jV n�m
s �e�j �s � ���� �	��� jGn�m

s �e�j �s � ����� �		���
jLn�ms �e�j �s � ��
��� �	���� jWn�m

s �e�j �s � ��
	� ��
�� for e � ��
�� n � �
��
m � �	� Note that the series ��� reduce to a polynomial for n � �� Therefore� there
exists only a �nite number of V n�m

s �e� in this case and all of them are shown on all
Figures corresponding to n � �� We intensionally show the behavior of the coe��
cients for rather large values of jnj and jmj to make the behavior more clearly visible
on the plots� To produce the coe�cients presented on all Figures of this paper we
used �
 decimal digits arithmetic as implemented in Maple�
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Figure �� The behavior of jV n�m
s �e�j �s � ���� 
	��� jGn�m

s �e�j �s � ����� �
����
jLn�ms �e�j �s � ��

�� 
	���� jWn�m

s �e�j �s � ����� �

�� for e � ��
�� n � ����
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Figure �� The behavior of jV n�m
s �e�j �s � ������ ������ jGn�m

s �e�j �s � ��
�� 
����
jLn�ms �e�j �s � ������ ������ jWn�m

s �e�j �s � ����� ���� for e � ��
�� n � 
�� m � ��
Note that the series ��� reduce to a polynomial for n � �� Therefore� there exists
only a �nite number of Gn�m

s �e� in this case and all of them are shown on all Figures
corresponding to n � ��
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