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Abstract. Fourier expansions of elliptic motion functions in multiples of the true,
eccentric, elliptic and mean anomalies are computed numerically by means of the fast
Fourier transform. Both Hansen-like coefficients and their derivatives with respect
to eccentricity of the orbit are considered. General behavior of the coefficients and
the efficiency (compactness) of the expansions are investigated for various values of
eccentricity of the orbit.
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1. Introduction

When constructing analytical and semi-analytical theories of motion of
artificial Earth satellites and other celestial bodies we face the problem
to expand some functions of coordinates into trigonometric series with
the coefficients depending on the eccentricity of the orbit. Numerical
efficiency of such series and, therefore, the quality of the resulting the-
ory of motion depends substantially not only on the eccentricity of the
orbit but also on the angular variable in multiples of which the expan-
sions are constructed. True, eccentric or mean anomalies are usually
used as the trigonometric argument of these expansions. A few years
ago it was suggested to use trigonometric expansions in multiples of
a new independent variable called elliptic anomaly (Brumberg, 1992;
Brumberg and Fukushima, 1994). Preliminary studies showed (Brum-
berg and Fukushima, 1994) that the series in multiples of the elliptic
anomaly in many cases converge faster than the series in multiples of
any classical anomaly. It allows one to use the elliptic anomaly very effi-
ciently for constructing theories of motion of celestial bodies (see, for
example, Vasiliev, Vakhidov and Sokolsky, 1996; Vakhidov and Vasiliev,
1996). On the other hand, no sufficiently detailed study of the question,
which anomaly is more effective for computing various kinds of pertur-
bations in motion of celestial bodies for different values of eccentricity,
has been yet performed.
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In this paper we propose an effective algorithm of numerical com-
putation of Hansen-like coefficients corresponding to various anomalies
as well as the derivatives of these coeflicients with respect to the eccen-
tricity. The algorithm is based on the fast Fourier transform (FFT)
and enables us to compute at once all the Fourier coefficients of a given
function, absolute value of which is higher than a given limit. The anal-
ogous ideas to use the fast Fourier transform to compute numerically
the special functions appearing in celestial mechanics have been pro-
posed, e.g., by Goad (1987). However, our algorithm has the advantage
of keeping track automatically of all kinds of errors of computations.
Making use of our algorithm we investigate numerically how fast the
coefficients of trigonometric series in multiples of different anomalies
decrease for various values of the eccentricity. In particular, one of
the important problems for practice is to study numerical efficiency
of various expansions of the satellite perturbing function both for the
perturbations due to oblateness of the central body and for the per-
turbations from external bodies. An attempt to consider this problem
was done already by Brumberg and Fukushima (1994), but, since the
authors considered only a few first terms of the expansion, the results
presented in that paper are not detailed enough to provide a definitive
answer for practice.

In the present paper we study trigonometric expansions in multiples
of four different anomalies: true, eccentric, mean and elliptic. It is clear
that our approach could be easily used also for computing the expan-
sions in multiples of any other angular variable (e.g., for the anomalies
introduced in (Bond and Janin, 1981; Ferrandiz et al., 1987)).

Let us stress that the aim of our research is not to obtain analyti-
cal estimations connected with the convergence of trigonometric series
under consideration, but to study the qualitative behavior of the Fouri-
er coefficients of elliptic motion functions on the basis of numerical
experiments.

2. Hansen-like Coefficients and Their Computation

We consider the following expansion

<£>nexp (Cf my) = f: X (e) exp (cl) sm) , (1)

where r, v are the radius-vector and the true anomaly, respectively,
defining the position of a body on an elliptic orbit, ¢ is the semi-major
axis of the orbit, n, m are integers, x corresponds to one of the above
mentioned anomalies, 1 is the imaginary unit. The coefficients Xpm
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depend on the eccentricity e of the orbit. Expansion (1) is widely used
in practical celestial mechanics (for example, for constructing analyt-
ical and semi-analytical theories of satellite motion). The aim of our
research is to study the behavior of the coefficients X" for various
anomalies and various values of the eccentricity.

In order to compute X" we use a special approach based on the
fast Fourier transform. This approach is very convenient to solve our
problem from several points of view. First, numerical Fourier analy-
sis with the FFT is very efficient for computing Fourier expansion of
a function which can be computed numerically. In celestial mechanics
such an approach has been used, for example, in (Chapront and Simon,
1996; Brumberg and Klioner, 1995; Klioner, 1997) and has shown its
high efficiency. Second, the technique based on the fast Fourier trans-
form may be easily applied to any anomaly z, in multiples of which the
expansion of coordinates is constructed. Third, this approach can be
identically applied for any values of the eccentricity e € [0, 1] includ-
ing those very close to 1. Moreover, we obtain simultaneously all the
coefficients X" for fixed n and m from a given interval of values for
the index s and/or all the coefficients X", magnitudes of which are
larger than a given limit.

For all anomalies we use the following computational scheme for the
coefficients X7 (e).

1. For a fixed value of the eccentricity e we compute the values of
the true anomaly v for 2V values of z distributed uniformly in the
interval [0, 27[: z; = 27/2N x (i — 1), i = 1,2,...,2". At this step
of the algorithm we solve (numerically) the equation v = v ().

2. For all 2V values of v and for the given n and m we evaluate the
left-hand side of (1).

3. By means of the fast Fourier transform we compute the numerical
values of the coefficients X™ satisfying in each from 2V points
x = z; the following relation

<C>nexp (‘f mv) = i3 XM (e) exp (? sx) . (2)

s=1-2N-1

The coefficients X™™ differ from the true values of the Fourier coef-
ficients X" because of errors of aliasing (see, e.g., Press et al., 1992)
and numerical round-off errors. The latter source of errors can be tack-
led by using the fact that X" are real functions of the eccentricity.
Therefore evaluating the Fourier coefficients in complex form (i.e., by
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a standard complex FFT procedure) we can use the imaginary parts of
the obtained coefficients to estimate the numerical round-off errors of
computations. In particular, we find the maximal (in absolute value)
imaginary part & among all the coefficients computed by means of the
FFT and retain only those coefficients, the real part of which is suf-
ficiently larger than . As additional test of the algorithm, we make
the inverse fast Fourier transform with the retained coefficients and find
the difference between the initial and restored functions. This difference
allows us to check the overall accuracy of our computations. In order
to make errors of aliasing negligible we always check that the coeffi-
cients retained after accounting for the numerical round-off errors are
sufficiently far from the boundaries of the interval s € [1 —2N~1 2N-1],
If it is not the case we increase the value of N by 1 and repeat the
computations.

For each kind of computations (including those of the derivatives
of the Hansen-like coefficients described in Section 3 below) we check
that our results coincide with the results computed by means of other
known methods within expected numerical errors. It is sufficient to
check this for a low value of the eccentricity. For a larger value (for
example, e = 0.9) the use of other methods becomes very difficult or
even impossible.

Let us briefly discuss how to solve the equation v = v (z) for each
anomaly.

2.1. TRUE ANOMALY

In this case we do not need to solve the equation v = v (x). We can
simply tabulate the left-hand side of the equation

<C>n exp (‘f mv) = i Vv (e) exp ((1) sv) (3)

a
S§=—00
in the points distributed uniformly with respect to v.
2.2. ECCENTRIC ANOMALY
In order to compute the coefficients of the expansions in multiples of
the eccentric anomaly g
o0

<£>ﬂ exp ((f mv) = Z Gy™ (e) exp (? 59) (4)

S§=—00
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we evaluate the left-hand side of (4) in the points distributed uniformly
with respect to g. The values of the true anomaly are calculated in these
points by means of the well-known relation

v 1+e g
tan — = tan 2.
an 5 T, tang (5)

2.3. MEAN ANOMALY

For the expansions in multiples of the mean anomaly [

<£>n exp (Cf my) = s:ij:w L™ (e) exp (Cl) sl) (6)

we need to compute the values of the true anomaly in the points dis-
tributed uniformly with respect to [. To this end we have to solve in
these points the Kepler equation

| =g—esing (7)

enabling one to find the numerical values of the eccentric anomaly g
and by using (5) the corresponding values of the true anomaly v.

In case of highly eccentric orbits it is not efficient to solve (7) by
means of the classical iteration method or the method of Newton iter-
ations because of slow convergence of the iteration process. It is more
reasonable to use in that case special methods of solving the Kepler
equation (see, for example, Danby and Burkardt, 1983).

2.4. BELLIPTIC ANOMALY

According to (Brumberg, 1992) the elliptic anomaly w is defined as

where F' is the elliptic integral of the first kind, K is the complete
elliptic integral of the first kind. In order to compute the coefficients of
the expansion in multiples of the elliptic anomaly

(5) e (im) = 35w e)esn (), )

we have to evaluate the true anomaly in the points distributed uni-
formly with respect to w. It can be done using the inverse of (8)

g = am <K(e) <2w 4 1) ,e> -3 (10)

™
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and computing K and the elliptic amplitude am(z, ¢) numerically. Alter-
natively one can use the Fourier expansion of (10) (Brumberg, 1992)

S

N A
g:w—i-ZZ sin 2sw, (11)
s=1

s 144¢?%

where ¢ is the nome

e | — K(— V=) (12)
a=exp | —T s :

This expansion is known to converge quite rapidly even for large eccen-
tricities due to relatively small value of ¢q. Eq. (5) is again used to
compute the corresponding values of v.

2.5. NUMERICAL RESULTS

We designed a package of computer programs in Maple (Char et al.,
1993) which allows one to evaluate the coefficients of expansions (3),
(4), (6) and (9) for any given values of the indices n and m and any
eccentricity e € [0,1[. Arbitrary-precision arithmetic implemented in
Maple is used herewith. The option to change numerical precision of
computations is quite useful for the investigation of both our numeri-
cal technique and the expansions themselves. Actually we do not use
any specific Maple features and it is quite easy to re-write the programs
into any effective computer language (e.g., FORTRAN) to speed up the
calculations further. For given m, n and e our software computes auto-
matically all the coefficients which could be reliably computed using
the given precision of arithmetic. The package automatically accounts
for both numerical round-off errors and errors of aliasing along the
lines described above. A more detailed discussion of the package can
be found in (Vasiliev, Vakhidov and Klioner, 1996; Klioner et al., 1996).

We calculated trigonometric expansions (3), (4), (6) and (9) for sev-
eral dozens pairs of the indices n and m which appear, e.g., in the
expansions of the satellite perturbing function and for four representa-
tive values of the eccentricity 0.1, 0.5, 0.75, 0.9. Principal features of
the behavior of the coefficients X" are described below.

2.5.1. Casen <0

The expansions with n < 0 are used when considering, e.g., perturba-
tions due to oblateness of the central body. Our numerical experiments
for n < 0 show that the anomalies can be ordered according to the com-
pactness of the corresponding trigonometric series as follows: true (most
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compact series), elliptic, eccentric, mean (least compact series). Indeed,
for n < 0 expansion (3) in multiples of the true anomaly reduces to a
finite polynomial. Moreover, the coefficients V"™ (e) decrease faster
than the coefficients of expansions in multiples of other anomalies.
On Figures 1-4 we see typical cases of the behavior of the coefficients
VI (e), G (e), L (e), Wi (e) of expansions (3), (4), (6) and (9).

Our calculations show that 1) the faster the series in multiples of
a given anomaly converge, the larger is the maximal coefficient of the
corresponding series, and the smaller is the value of s for this maximal
coefficient; 2) the larger the value of m, the larger is the value of s
for the maximal coefficient of the corresponding expansion. For m=0
all four maximums correspond to s = 0 and the coefficients decrease
symmetrically with respect to s = 0 in accordance to the D’Alembert
rule

Xmm = X (13)

—S

Let us note also an interesting phenomenon in the behavior of the
Hansen coefficients L?"™. For n + |m| = —1 certain ”"pulsations” of the
magnitude of the Hansen coefficients can be observed (see, Figures 1-2).
The ”pulsations” appear only in the domain of increasing the Hansen
coefficients from the central minimum (Lj"(e) = 0 for n+ |m| = —1).
The number and the amplitude of the ”pulsations” increases together
with —n.

2.5.2. Casen >0

The expansions with n > 0 are used when considering, e.g., the per-
turbations due to external bodies. For n > 0 the anomalies can be
ordered according to the compactness of the corresponding expansions
as follows: eccentric, elliptic, true. In this case expansion (4) in multi-
ples of the eccentric anomaly reduces to a finite polynomial. Numerical
efficiency of the expansions in multiples of the mean anomaly depends
crucially on the precision to be acquired. For a low precision the series
in multiples of the mean anomaly converge faster than the other ones.
Because of a very fast decrease of the Hansen coefficients these series
are sometimes more efficient than even the series in multiples of the
eccentric anomaly which have a finite number of terms (see, for exam-
ple, Figure 5 in the neighborhood of maximum). For a higher precision
the efficiency of the series in multiples of the mean anomaly gets worse
rapidly.

Figures 5-7 show typical behavior of V]*™(e), G (e), L7™(e),
W™ (e) for n > 0. Our experiments show that the series in multiples of
the mean anomaly are more efficient for larger values of n. The efficiency
of the series in multiples of the true anomaly decreases with increasing



8 SERGEI A. KLIONER ET AL.

of n. The coefficients W] (e) of the series in multiples of the elliptic
anomaly do not decrease monotonically from the central maximum, but
exhibit irregular pulsations of magnitudes (see, for example, Figure 5).

Let us make some notes on the behavior of Hansen coefficients. The
larger the index m, the more asymmetric is the decrease of the Hansen
coefficients from the central maximum. This fact is observed visually on
Figure 6. On the same Figure 6 we see that Hansen coefficients exhibit
again certain ”pulsations” of magnitude. These "pulsations” are larger
and more frequent for larger values of n and m.

For larger eccentricities all the effects described above (e.g., num-
ber and amplitude of the ”pulsations” for Hansen coefficients, etc.) are
amplified. Numerical efficiency of all the expansions under considera-
tion decreases with increasing the eccentricity. The described advan-
tages and disadvantages of the anomalies for highly eccentric orbits are
also amplified. On the opposite, for smaller eccentricities the differences
in the behavior of V,»™(e), G»"™(e), L} (e), W™ (e) become smaller
and the numerical efficiency of all four kinds of expansions is almost
the same.

The results of our investigations are described in more detail in
(Vasiliev, Vakhidov and Klioner, 1996). This work contains a large
number of figures presenting the behavior of Fourier coefficients for
four representative values of the eccentricity: 0.1, 0.5, 0.75, 0.9. These
figures confirm visually the effects described above. The figures, numer-
ical values of the coefficients as well as the software enabling one to
compute the expansions are available from the authors upon request.

3. Derivatives of the Hansen-like Coefficients

Our approach allows one to evaluate not only the coefficients V"™ (e),
G (e), L™ (e), W™ (e) but also their derivatives with respect to the
eccentricity. It is very important because when constructing analytical
and semi-analytical theories of motion we need to integrate differential
equations (for example, Lagrange equations or canonical equations for
Delaunay variables) containing in the right-hand sides the derivatives
of the perturbing function with respect to the orbital elements, rather
than the perturbing function itself. We describe below how to solve this
problem in the framework of our approach.
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3.1. TRUE ANOMALY

We consider the left-hand side of (3) as a function of e and v

[¢)
n €Xp (1 mv)
Fy(e,v) = (1 —-¢€?) ——2.
v (e ) ( ) (1+ecosv)"”
Differentiating this relation with respect to e we get

OF,
9 =A, F,, A, ——n<

On the other hand, we see that

OF, & dvhm(e) o
aev = Z T eXp (1 S’U) .

2e Ccos v )
1—e? 14ecosv/’

§=—00

(14)

(15)

(16)

Therefore, the Fourier coefficients of the function A,F, coincide with
the derivatives dV"™ (e) /de we are looking for. In order to compute
the Fourier expansion of A, F;, our approach described in Section 2 can

be applied identically.

The similar way can be used also for computing derivatives of the

coefficients G (e), L} (e) and W™ (e).
3.2. ECCENTRIC ANOMALY

We consider the left-hand side of (4) as a function of e and g

n €Xp (Cl) mv(e,g))
(1+ecosv(e,g))" "

Fy(e,g9) = (1 — 62)

Here v is considered as a function of e and g

cosg —e ) V1 —e?sing
cosv = ——— | siny = ——=.
1 —ecosg 1 —ecosyg
Using the equation
Jdv(e,g)  sinw
de  1—e2’
one gets
OF, 1 °
8_69 =A, F,, Ay= o2 (—n(cosv—i—e)—i— 1msinv).

(17)
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3.3. MEAN ANOMALY

The left-hand side of (6) can considered as a function of e and [

n €xp ((f mv(e,l))
(1+ecoswv(e, )"’

Fi(e,l) = (1-¢?) (21)

where v is considered here as a function of e and [. Taking the derivative
of (7) one gets

dg (e,l)  sinw

_ 22
de V1—e?’ -
v (e,l) sinv
- 2 . 2
Sl 2 ccosn) @
and, therefore,
OF,
—=A F,
Je L,
1 o
Al:l 5 (—ncosv(1+ec0sv)+ 1msinv(2+ecosv)) . (24)
—e

3.4. ELLIPTIC ANOMALY
The left-hand side of (9) can be considered as a function of e and w

n €xXp (Cl) mv(e,w))

F, =(1-¢ : 25
w (&) ( ¢ ) (1+ ecosv(e,w))" (25)
Here v is considered as a function of e and w. Hence we get
OF,
a—ew:Aw Fy,
—2e — €2 cos v — cos v ensinv o 0v (e, w)
Ay= — 26
v n(1+6COS’U)(1—62) +<1+ec0sv ) de (26)

In order to compute v (e, w) /Je we differentiate one of the relations
(18) taking into account that g is considered as a function of e and w
here. The result is

v (e,w)  sinv N 1+ ecosv Og (e, w) 27)

de  1—e2 V1= e2 Oe

There are many ways to compute dg (e, w) /de. We could, for example,
differentiate the series (11) with respect to e (the nome g depends only
on the eccentricity e). Alternatively we could differentiate in closed
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form the definition (10). Here we prefer another way, which avoids both
expansions and the use of the elliptic amplitide am(z, e). Considering
(8) as an implicit function for g(e, w) we get

dg (e,w) ow (e, g) 1 dw (e,9)
Oe __< dg ) Oe '’
ow(e,g) OF (g + 5.¢) B T\ dK (e)
o ‘2<K<e>>2[ et KO F (74 5.0) ]
ow (e, g) m OF(g+5.e)

dg 2K (e) dg ’ (28)

and the derivatives of the elliptic integrals are defined as

de  1—¢2
OF (a,€) 1

OF (a, e) 1 lE(a,e) —(1—€*) F(ae) esinacossz ] . (29)

e 1 — e2sin“«

da  /1— Zsinta o
dK () _E(e) = (1—€’) K (e) (31)

de (1—¢€?)e

Here E (a,e) and E (e) are the incomplete and complete elliptic inte-
grals of the second kind, respectively.

3.5. NUMERICAL RESULTS

In order to investigate the efficiency of trigonometric series with the
coefficients dV,»"™ (e) /de, dG?'"™ (e) /de, dL}™ (e) /de, AW ™ (e) /de
we have computed the series numerically for various eccentricities and
for various values of n and m. We used herewith the software described
in Section 3 generalized in an obvious way to cope with the functions
(15), (20), (24) and (26).

The results can be summarized as follows. For each anomaly the
behavior of derivatives of the Fourier coefficients is quite similar to the
behavior of the Fourier coefficients themselves as far as the efficiency
of the corresponding expansions is concerned. Numerical values of the
derivatives are usually larger than the values of the coefficients them-
selves. On Figures 8-10 one can see some examples of typical behavior
of the derivatives. A large number of figures for the derivatives can be
found in (Vasiliev et al., 1997). Additional figures, numerical values of
the derivatives as well as the corresponding software are available from
the authors upon request.
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3.6. HIGHER-ORDER DERIVATIVES

Computation of the higher-order derivatives of V,»™(e), G (e), LT™(e),
W™ (e) (which are necessary for constructing of higher-order theories
of motion) can be realized in essentially the same way as that of the
first-order derivatives. Indeed, let us consider the left-hand side of (1)
as a function of e and an arbitrary anomaly

n €xp (? mu(e, x))
(1+ecosv(e,x))"’

Fy (e,3) = (1-¢?) (32)

where v is considered as a function of e and z. Using the approach
described above we obtain quite generally

oF,

oo = Aa Fr (33)
One more differentiation gives

0*F, 0A, 9

= (e ) B (34

On the other hand,

0?’F, X d2Xm™ (e) °
W = Z T €exXp (1 S:E) . (35)

S§=—00

Thus, the Fourier series of the right-hand side of (34) gives us the
second-order derivatives d?X™™ (e) /de®. In the same way we could
derive the “generating functions” for the derivatives of any order. Although
for the higher-order derivatives the expressions are rather complicated,
the derivation can be easily automated with the aid of any computer
algebra system (what we in fact did even for the first-order derivatives).

4. Concluding Remarks

The approach described in the present paper enables one to evaluate by
means of the fast Fourier transform not only the coefficients considered
in the paper and their derivatives, but also coefficients of other Fourier
expansions which are used in modern celestial mechanics. In the same
way one can evaluate, for example, the Hansen-like coefficients corre-
sponding to other anomalies, the coefficients of the generalized Kepler
equation (see, Brumberg, 1992; Klioner, 1992), the functions F' (e) and
G (e) introduced in (Brumberg et al., 1995), Laplace coefficients, etc.
The derivatives of the corresponding coefficients can be computed as
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well. Simultaneous computation of a substantial numbers of harmonics
allows one to judge how efficient the corresponding expansion is and
how many terms are necessary to attain a required level of accuracy.
In particular, our software enables one to calculate how many terms of
an expansion we have to retain in order to represent the corresponding
function of elliptic motion with a given accuracy. In principle, a similar
FFT-based approach could be applied to investigate actual efficiency of
various variants of analytical and semi-analytical theories of motion of
artificial satellites and other celestial bodies (see, e.g., Klioner, 1997).
A detailed study of the latter problem is underway.
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Figure 1. The behavior of |VJ*™(e)| (s € [-1,39]), |G2™(e)| (s € [—48,199)]),
|Ly™(e)| (s € [—211,895]), |[W™(e)| (s € [—29,142]) for e = 0.75, n = —20,
m = 19. Note that the series (3) reduce to a polynomial for n < 0. Therefore, there
exists only a finite number of V"™ (e) in this case and all of them are shown on all
Figures corresponding to n < 0. We intensionally show the behavior of the coeffi-
cients for rather large values of |n| and |m| to make the behavior more clearly visible
on the plots. To produce the coefficients presented on all Figures of this paper we
used 32 decimal digits arithmetic as implemented in Maple.
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Figure 2. The behavior of |VJ"™(e)
|IL&™ (e)] (s € [-275,793]), (W (
m = 14.
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€ [-1,29]), |G¥™(e)| (s € [-58,175]),

(s € [—34,122]) for e =

0.75, n = —15,
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Figure 3. The behavior of |V{*™ (e
|Ls™ (e)] (s € [-600,600]), [W."™ (e
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(s € [~15,15), IGI™(e)] (s € [~123,123]),
(s € [-80,80]) for e = 0.75, n = —15, m = 0.
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Figure 4. The behavior of |VJ"™(e)| (s € [-5,15]), |G2™(e)| (s € [—90,133)]),
|Ly™(e)| (s € [—456,647]), W™ (e)| (s € [—56,89]) for e = 0.75, n = —10, m = 5.
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Figure 5. The behavior of |[V;*™(e)| (s € [-131,131]), |G¥™(e)| (s € [—20,20]),
|Ly™(e)| (s € [—145,145]), W™ (e)| (s € [—64,64]) for e = 0.75, n = 20, m = 0.
Note that the series (4) reduce to a polynomial for n > 0. Therefore, there exists
only a finite number of G3"™(e) in this case and all of them are shown on all Figures
corresponding to n > 0.
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The behavior of |VJ"™(e)
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(s € [-111,151]), |G™™(e)| (s € [-20,20]),

Figure 6.
(s € [-62,360)), |Wi™(e)| (s € [-51,73]) for e = 0.75, n = 20, m = 20.
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Figure 7. The behavior of |V{*™ (e
| ™ (e)] (s € [-194,297]), [W." (e
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(s € [~106,114]), |G (¢)] (s € [~10,10]),
s € [—54,59]) for e = 0.75, n = 10, m = 4.
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Figure 8. The behavior of |dV{"™(e)/de| (s € [—1,39]), |[dGy ™ (e)/de| (s €
[—49,202]), |dLy™(e)/de| (s € [—219,910]), |[dW " (e)/de| (s € [—28,140]) for
e=0.75,n=—20, m=19.
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Figure 9. The behavior of |dV{"™(e)/de| (s € [—15,15]), |[dGy ™ (e)/de| (s €
[—124,124]), |[dLy ™ (e)/de| (s € [—605,605]), |dW"(e)/de| (s € [—81,81]) for
e=10.75, n=—-15 m=0.
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Figure 10. The behavior of |dV"™(e)/de| (s € [—136,136]), |dGE ™ (e)/de| (s €
[—20,20]), |dLY™(e)/de| (s € [—152,152]), |[dW"™(e)/de| (s € [—66,66]) for e =
0.75, n = 20, m = 0.
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